Copied to
clipboard

G = A4⋊Dic5order 240 = 24·3·5

The semidirect product of A4 and Dic5 acting via Dic5/C10=C2

non-abelian, soluble, monomial

Aliases: A4⋊Dic5, C10.3S4, C23.D15, C22⋊Dic15, (C2×A4).D5, C52(A4⋊C4), (C5×A4)⋊3C4, C2.1(C5⋊S4), (C10×A4).1C2, (C2×C10)⋊3Dic3, (C22×C10).2S3, SmallGroup(240,107)

Series: Derived Chief Lower central Upper central

C1C22C5×A4 — A4⋊Dic5
C1C22C2×C10C5×A4C10×A4 — A4⋊Dic5
C5×A4 — A4⋊Dic5
C1C2

Generators and relations for A4⋊Dic5
 G = < a,b,c,d,e | a2=b2=c3=d10=1, e2=d5, cac-1=eae-1=ab=ba, ad=da, cbc-1=a, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

3C2
3C2
4C3
3C22
3C22
30C4
30C4
4C6
3C10
3C10
4C15
15C2×C4
15C2×C4
20Dic3
3C2×C10
3C2×C10
6Dic5
6Dic5
4C30
15C22⋊C4
3C2×Dic5
3C2×Dic5
4Dic15
5A4⋊C4
3C23.D5

Character table of A4⋊Dic5

 class 12A2B2C34A4B4C4D5A5B610A10B10C10D10E10F15A15B15C15D30A30B30C30D
 size 113383030303022822666688888888
ρ111111111111111111111111111    trivial
ρ211111-1-1-1-111111111111111111    linear of order 2
ρ31-11-11-ii-ii11-1-1-11-1-111111-1-1-1-1    linear of order 4
ρ41-11-11i-ii-i11-1-1-11-1-111111-1-1-1-1    linear of order 4
ρ5222220000-1-5/2-1+5/22-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ62222-1000022-1222222-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ72222-10000-1-5/2-1+5/2-1-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/232ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ52523ζ543ζ554ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253    orthogonal lifted from D15
ρ8222220000-1+5/2-1-5/22-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ92222-10000-1+5/2-1-5/2-1-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/23ζ533ζ52533ζ543ζ55432ζ5432ζ554ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554    orthogonal lifted from D15
ρ102222-10000-1-5/2-1+5/2-1-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/23ζ543ζ554ζ3ζ533ζ52523ζ533ζ525332ζ5432ζ5543ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252    orthogonal lifted from D15
ρ112222-10000-1+5/2-1-5/2-1-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ5543ζ533ζ52533ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554    orthogonal lifted from D15
ρ122-22-2-10000221-2-22-2-22-1-1-1-11111    symplectic lifted from Dic3, Schur index 2
ρ132-22-220000-1-5/2-1+5/2-21-5/21+5/2-1+5/21-5/21+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/21+5/21-5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ142-22-2-10000-1-5/2-1+5/211-5/21+5/2-1+5/21-5/21+5/2-1-5/23ζ543ζ554ζ3ζ533ζ52523ζ533ζ525332ζ5432ζ554ζ3ζ533ζ5253ζ32ζ5432ζ554ζ3ζ543ζ5543ζ533ζ5252    symplectic lifted from Dic15, Schur index 2
ρ152-22-2-10000-1-5/2-1+5/211-5/21+5/2-1+5/21-5/21+5/2-1-5/232ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ52523ζ543ζ5543ζ533ζ5252ζ3ζ543ζ554ζ32ζ5432ζ554ζ3ζ533ζ5253    symplectic lifted from Dic15, Schur index 2
ρ162-22-2-10000-1+5/2-1-5/211+5/21-5/2-1-5/21+5/21-5/2-1+5/2ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ5543ζ533ζ5253ζ3ζ543ζ554ζ3ζ533ζ52533ζ533ζ5252ζ32ζ5432ζ554    symplectic lifted from Dic15, Schur index 2
ρ172-22-2-10000-1+5/2-1-5/211+5/21-5/2-1-5/21+5/21-5/2-1+5/23ζ533ζ52533ζ543ζ55432ζ5432ζ554ζ3ζ533ζ5252ζ32ζ5432ζ5543ζ533ζ5252ζ3ζ533ζ5253ζ3ζ543ζ554    symplectic lifted from Dic15, Schur index 2
ρ182-22-220000-1+5/2-1-5/2-21+5/21-5/2-1-5/21+5/21-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/21-5/21+5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ1933-1-1011-1-133033-1-1-1-100000000    orthogonal lifted from S4
ρ2033-1-10-1-11133033-1-1-1-100000000    orthogonal lifted from S4
ρ213-3-110-iii-i330-3-3-111-100000000    complex lifted from A4⋊C4
ρ223-3-110i-i-ii330-3-3-111-100000000    complex lifted from A4⋊C4
ρ2366-2-200000-3-35/2-3+35/20-3+35/2-3-35/21-5/21-5/21+5/21+5/200000000    orthogonal lifted from C5⋊S4
ρ2466-2-200000-3+35/2-3-35/20-3-35/2-3+35/21+5/21+5/21-5/21-5/200000000    orthogonal lifted from C5⋊S4
ρ256-6-2200000-3+35/2-3-35/203+35/23-35/21+5/2-1-5/2-1+5/21-5/200000000    symplectic faithful, Schur index 2
ρ266-6-2200000-3-35/2-3+35/203-35/23+35/21-5/2-1+5/2-1-5/21+5/200000000    symplectic faithful, Schur index 2

Smallest permutation representation of A4⋊Dic5
On 60 points
Generators in S60
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 21)(11 59)(12 60)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 51)(19 52)(20 53)(21 26)(22 27)(23 28)(24 29)(25 30)(31 48)(32 49)(33 50)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)
(1 19 44)(2 20 45)(3 11 46)(4 12 47)(5 13 48)(6 14 49)(7 15 50)(8 16 41)(9 17 42)(10 18 43)(21 51 31)(22 52 32)(23 53 33)(24 54 34)(25 55 35)(26 56 36)(27 57 37)(28 58 38)(29 59 39)(30 60 40)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 27 6 22)(2 26 7 21)(3 25 8 30)(4 24 9 29)(5 23 10 28)(11 35 16 40)(12 34 17 39)(13 33 18 38)(14 32 19 37)(15 31 20 36)(41 60 46 55)(42 59 47 54)(43 58 48 53)(44 57 49 52)(45 56 50 51)

G:=sub<Sym(60)| (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,21)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (1,6)(2,7)(3,8)(4,9)(5,10)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(21,26)(22,27)(23,28)(24,29)(25,30)(31,48)(32,49)(33,50)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,19,44)(2,20,45)(3,11,46)(4,12,47)(5,13,48)(6,14,49)(7,15,50)(8,16,41)(9,17,42)(10,18,43)(21,51,31)(22,52,32)(23,53,33)(24,54,34)(25,55,35)(26,56,36)(27,57,37)(28,58,38)(29,59,39)(30,60,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,27,6,22)(2,26,7,21)(3,25,8,30)(4,24,9,29)(5,23,10,28)(11,35,16,40)(12,34,17,39)(13,33,18,38)(14,32,19,37)(15,31,20,36)(41,60,46,55)(42,59,47,54)(43,58,48,53)(44,57,49,52)(45,56,50,51)>;

G:=Group( (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,21)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (1,6)(2,7)(3,8)(4,9)(5,10)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(21,26)(22,27)(23,28)(24,29)(25,30)(31,48)(32,49)(33,50)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,19,44)(2,20,45)(3,11,46)(4,12,47)(5,13,48)(6,14,49)(7,15,50)(8,16,41)(9,17,42)(10,18,43)(21,51,31)(22,52,32)(23,53,33)(24,54,34)(25,55,35)(26,56,36)(27,57,37)(28,58,38)(29,59,39)(30,60,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,27,6,22)(2,26,7,21)(3,25,8,30)(4,24,9,29)(5,23,10,28)(11,35,16,40)(12,34,17,39)(13,33,18,38)(14,32,19,37)(15,31,20,36)(41,60,46,55)(42,59,47,54)(43,58,48,53)(44,57,49,52)(45,56,50,51) );

G=PermutationGroup([[(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,21),(11,59),(12,60),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,51),(19,52),(20,53),(21,26),(22,27),(23,28),(24,29),(25,30),(31,48),(32,49),(33,50),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)], [(1,19,44),(2,20,45),(3,11,46),(4,12,47),(5,13,48),(6,14,49),(7,15,50),(8,16,41),(9,17,42),(10,18,43),(21,51,31),(22,52,32),(23,53,33),(24,54,34),(25,55,35),(26,56,36),(27,57,37),(28,58,38),(29,59,39),(30,60,40)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,27,6,22),(2,26,7,21),(3,25,8,30),(4,24,9,29),(5,23,10,28),(11,35,16,40),(12,34,17,39),(13,33,18,38),(14,32,19,37),(15,31,20,36),(41,60,46,55),(42,59,47,54),(43,58,48,53),(44,57,49,52),(45,56,50,51)]])

A4⋊Dic5 is a maximal subgroup of   A4⋊Dic10  Dic5×S4  D5×A4⋊C4  D10⋊S4  C20.1S4  C4×C5⋊S4  C242D15
A4⋊Dic5 is a maximal quotient of   C20.S4  Q8⋊Dic15  C52U2(𝔽3)

Matrix representation of A4⋊Dic5 in GL5(𝔽61)

10000
01000
00010
00100
000060
,
10000
01000
006000
000600
0050111
,
10000
01000
00001
00115060
00565511
,
4460000
10000
006000
000600
000060
,
457000
5057000
00010
006000
006511

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,50,0,0,0,60,11,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,11,56,0,0,0,50,55,0,0,1,60,11],[44,1,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[4,50,0,0,0,57,57,0,0,0,0,0,0,60,6,0,0,1,0,5,0,0,0,0,11] >;

A4⋊Dic5 in GAP, Magma, Sage, TeX

A_4\rtimes {\rm Dic}_5
% in TeX

G:=Group("A4:Dic5");
// GroupNames label

G:=SmallGroup(240,107);
// by ID

G=gap.SmallGroup(240,107);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,2,12,146,1155,3604,916,2165,1637]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^10=1,e^2=d^5,c*a*c^-1=e*a*e^-1=a*b=b*a,a*d=d*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of A4⋊Dic5 in TeX
Character table of A4⋊Dic5 in TeX

׿
×
𝔽