non-abelian, soluble, monomial
Aliases: A4⋊Dic5, C10.3S4, C23.D15, C22⋊Dic15, (C2×A4).D5, C5⋊2(A4⋊C4), (C5×A4)⋊3C4, C2.1(C5⋊S4), (C10×A4).1C2, (C2×C10)⋊3Dic3, (C22×C10).2S3, SmallGroup(240,107)
Series: Derived ►Chief ►Lower central ►Upper central
C5×A4 — A4⋊Dic5 |
Generators and relations for A4⋊Dic5
G = < a,b,c,d,e | a2=b2=c3=d10=1, e2=d5, cac-1=eae-1=ab=ba, ad=da, cbc-1=a, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >
Character table of A4⋊Dic5
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D | |
size | 1 | 1 | 3 | 3 | 8 | 30 | 30 | 30 | 30 | 2 | 2 | 8 | 2 | 2 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | orthogonal lifted from D15 |
ρ8 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | orthogonal lifted from D15 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | orthogonal lifted from D15 |
ρ11 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | orthogonal lifted from D15 |
ρ12 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | -2 | -2 | 2 | -2 | -2 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ14 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52+ζ53 | ζ32ζ54-ζ32ζ5+ζ54 | ζ3ζ54-ζ3ζ5+ζ54 | -ζ3ζ53+ζ3ζ52+ζ52 | symplectic lifted from Dic15, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ54-ζ3ζ5+ζ54 | ζ32ζ54-ζ32ζ5+ζ54 | ζ3ζ53-ζ3ζ52+ζ53 | symplectic lifted from Dic15, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ54-ζ3ζ5+ζ54 | ζ3ζ53-ζ3ζ52+ζ53 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ32ζ54-ζ32ζ5+ζ54 | symplectic lifted from Dic15, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | ζ32ζ54-ζ32ζ5+ζ54 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ53-ζ3ζ52+ζ53 | ζ3ζ54-ζ3ζ5+ζ54 | symplectic lifted from Dic15, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ19 | 3 | 3 | -1 | -1 | 0 | 1 | 1 | -1 | -1 | 3 | 3 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ20 | 3 | 3 | -1 | -1 | 0 | -1 | -1 | 1 | 1 | 3 | 3 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ21 | 3 | -3 | -1 | 1 | 0 | -i | i | i | -i | 3 | 3 | 0 | -3 | -3 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ22 | 3 | -3 | -1 | 1 | 0 | i | -i | -i | i | 3 | 3 | 0 | -3 | -3 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ23 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ24 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ25 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 3+3√5/2 | 3-3√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ26 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 3-3√5/2 | 3+3√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 21)(11 59)(12 60)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 51)(19 52)(20 53)(21 26)(22 27)(23 28)(24 29)(25 30)(31 48)(32 49)(33 50)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)
(1 19 44)(2 20 45)(3 11 46)(4 12 47)(5 13 48)(6 14 49)(7 15 50)(8 16 41)(9 17 42)(10 18 43)(21 51 31)(22 52 32)(23 53 33)(24 54 34)(25 55 35)(26 56 36)(27 57 37)(28 58 38)(29 59 39)(30 60 40)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 27 6 22)(2 26 7 21)(3 25 8 30)(4 24 9 29)(5 23 10 28)(11 35 16 40)(12 34 17 39)(13 33 18 38)(14 32 19 37)(15 31 20 36)(41 60 46 55)(42 59 47 54)(43 58 48 53)(44 57 49 52)(45 56 50 51)
G:=sub<Sym(60)| (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,21)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (1,6)(2,7)(3,8)(4,9)(5,10)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(21,26)(22,27)(23,28)(24,29)(25,30)(31,48)(32,49)(33,50)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,19,44)(2,20,45)(3,11,46)(4,12,47)(5,13,48)(6,14,49)(7,15,50)(8,16,41)(9,17,42)(10,18,43)(21,51,31)(22,52,32)(23,53,33)(24,54,34)(25,55,35)(26,56,36)(27,57,37)(28,58,38)(29,59,39)(30,60,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,27,6,22)(2,26,7,21)(3,25,8,30)(4,24,9,29)(5,23,10,28)(11,35,16,40)(12,34,17,39)(13,33,18,38)(14,32,19,37)(15,31,20,36)(41,60,46,55)(42,59,47,54)(43,58,48,53)(44,57,49,52)(45,56,50,51)>;
G:=Group( (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,21)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (1,6)(2,7)(3,8)(4,9)(5,10)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(21,26)(22,27)(23,28)(24,29)(25,30)(31,48)(32,49)(33,50)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,19,44)(2,20,45)(3,11,46)(4,12,47)(5,13,48)(6,14,49)(7,15,50)(8,16,41)(9,17,42)(10,18,43)(21,51,31)(22,52,32)(23,53,33)(24,54,34)(25,55,35)(26,56,36)(27,57,37)(28,58,38)(29,59,39)(30,60,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,27,6,22)(2,26,7,21)(3,25,8,30)(4,24,9,29)(5,23,10,28)(11,35,16,40)(12,34,17,39)(13,33,18,38)(14,32,19,37)(15,31,20,36)(41,60,46,55)(42,59,47,54)(43,58,48,53)(44,57,49,52)(45,56,50,51) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,21),(11,59),(12,60),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,51),(19,52),(20,53),(21,26),(22,27),(23,28),(24,29),(25,30),(31,48),(32,49),(33,50),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)], [(1,19,44),(2,20,45),(3,11,46),(4,12,47),(5,13,48),(6,14,49),(7,15,50),(8,16,41),(9,17,42),(10,18,43),(21,51,31),(22,52,32),(23,53,33),(24,54,34),(25,55,35),(26,56,36),(27,57,37),(28,58,38),(29,59,39),(30,60,40)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,27,6,22),(2,26,7,21),(3,25,8,30),(4,24,9,29),(5,23,10,28),(11,35,16,40),(12,34,17,39),(13,33,18,38),(14,32,19,37),(15,31,20,36),(41,60,46,55),(42,59,47,54),(43,58,48,53),(44,57,49,52),(45,56,50,51)]])
A4⋊Dic5 is a maximal subgroup of
A4⋊Dic10 Dic5×S4 D5×A4⋊C4 D10⋊S4 C20.1S4 C4×C5⋊S4 C24⋊2D15
A4⋊Dic5 is a maximal quotient of C20.S4 Q8⋊Dic15 C5⋊2U2(𝔽3)
Matrix representation of A4⋊Dic5 ►in GL5(𝔽61)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 50 | 11 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 11 | 50 | 60 |
0 | 0 | 56 | 55 | 11 |
44 | 60 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 60 |
4 | 57 | 0 | 0 | 0 |
50 | 57 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 6 | 5 | 11 |
G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,50,0,0,0,60,11,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,11,56,0,0,0,50,55,0,0,1,60,11],[44,1,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[4,50,0,0,0,57,57,0,0,0,0,0,0,60,6,0,0,1,0,5,0,0,0,0,11] >;
A4⋊Dic5 in GAP, Magma, Sage, TeX
A_4\rtimes {\rm Dic}_5
% in TeX
G:=Group("A4:Dic5");
// GroupNames label
G:=SmallGroup(240,107);
// by ID
G=gap.SmallGroup(240,107);
# by ID
G:=PCGroup([6,-2,-2,-3,-5,-2,2,12,146,1155,3604,916,2165,1637]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^10=1,e^2=d^5,c*a*c^-1=e*a*e^-1=a*b=b*a,a*d=d*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations
Export
Subgroup lattice of A4⋊Dic5 in TeX
Character table of A4⋊Dic5 in TeX