non-abelian, soluble, monomial
Aliases: A4⋊1Dic10, Dic5.3S4, (C5×A4)⋊Q8, A4⋊C4.D5, C5⋊1(A4⋊Q8), (C2×C10)⋊Dic6, C22⋊(C15⋊Q8), C10.9(C2×S4), C2.12(D5×S4), (C2×A4).1D10, C23.1(S3×D5), A4⋊Dic5.2C2, (A4×Dic5).1C2, (C22×C10).1D6, (C10×A4).1C22, (C22×Dic5).1S3, (C5×A4⋊C4).1C2, SmallGroup(480,975)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4⋊Dic10
G = < a,b,c,d,e | a2=b2=c3=d20=1, e2=d10, cac-1=dad-1=ab=ba, ae=ea, cbc-1=a, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=d-1 >
Subgroups: 548 in 84 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2 [×2], C3, C4 [×6], C22, C22 [×2], C5, C6, C2×C4 [×6], Q8 [×2], C23, C10, C10 [×2], Dic3 [×2], C12, A4, C15, C22⋊C4 [×2], C4⋊C4 [×3], C22×C4, C2×Q8, Dic5, Dic5 [×3], C20 [×2], C2×C10, C2×C10 [×2], Dic6, C2×A4, C30, C22⋊Q8, Dic10 [×2], C2×Dic5 [×4], C2×C20 [×2], C22×C10, A4⋊C4, A4⋊C4, C4×A4, C5×Dic3, C3×Dic5, Dic15, C5×A4, C10.D4 [×2], C4⋊Dic5, C23.D5, C5×C22⋊C4, C2×Dic10, C22×Dic5, A4⋊Q8, C15⋊Q8, C10×A4, Dic5.14D4, C5×A4⋊C4, A4⋊Dic5, A4×Dic5, A4⋊Dic10
Quotients: C1, C2 [×3], C22, S3, Q8, D5, D6, D10, Dic6, S4, Dic10, C2×S4, S3×D5, A4⋊Q8, C15⋊Q8, D5×S4, A4⋊Dic10
(1 11)(3 13)(5 15)(7 17)(9 19)(22 32)(24 34)(26 36)(28 38)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(62 72)(64 74)(66 76)(68 78)(70 80)(81 91)(83 93)(85 95)(87 97)(89 99)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)
(1 71 115)(2 116 72)(3 73 117)(4 118 74)(5 75 119)(6 120 76)(7 77 101)(8 102 78)(9 79 103)(10 104 80)(11 61 105)(12 106 62)(13 63 107)(14 108 64)(15 65 109)(16 110 66)(17 67 111)(18 112 68)(19 69 113)(20 114 70)(21 43 99)(22 100 44)(23 45 81)(24 82 46)(25 47 83)(26 84 48)(27 49 85)(28 86 50)(29 51 87)(30 88 52)(31 53 89)(32 90 54)(33 55 91)(34 92 56)(35 57 93)(36 94 58)(37 59 95)(38 96 60)(39 41 97)(40 98 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 85 11 95)(2 84 12 94)(3 83 13 93)(4 82 14 92)(5 81 15 91)(6 100 16 90)(7 99 17 89)(8 98 18 88)(9 97 19 87)(10 96 20 86)(21 67 31 77)(22 66 32 76)(23 65 33 75)(24 64 34 74)(25 63 35 73)(26 62 36 72)(27 61 37 71)(28 80 38 70)(29 79 39 69)(30 78 40 68)(41 113 51 103)(42 112 52 102)(43 111 53 101)(44 110 54 120)(45 109 55 119)(46 108 56 118)(47 107 57 117)(48 106 58 116)(49 105 59 115)(50 104 60 114)
G:=sub<Sym(120)| (1,11)(3,13)(5,15)(7,17)(9,19)(22,32)(24,34)(26,36)(28,38)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(62,72)(64,74)(66,76)(68,78)(70,80)(81,91)(83,93)(85,95)(87,97)(89,99)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,71,115)(2,116,72)(3,73,117)(4,118,74)(5,75,119)(6,120,76)(7,77,101)(8,102,78)(9,79,103)(10,104,80)(11,61,105)(12,106,62)(13,63,107)(14,108,64)(15,65,109)(16,110,66)(17,67,111)(18,112,68)(19,69,113)(20,114,70)(21,43,99)(22,100,44)(23,45,81)(24,82,46)(25,47,83)(26,84,48)(27,49,85)(28,86,50)(29,51,87)(30,88,52)(31,53,89)(32,90,54)(33,55,91)(34,92,56)(35,57,93)(36,94,58)(37,59,95)(38,96,60)(39,41,97)(40,98,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,85,11,95)(2,84,12,94)(3,83,13,93)(4,82,14,92)(5,81,15,91)(6,100,16,90)(7,99,17,89)(8,98,18,88)(9,97,19,87)(10,96,20,86)(21,67,31,77)(22,66,32,76)(23,65,33,75)(24,64,34,74)(25,63,35,73)(26,62,36,72)(27,61,37,71)(28,80,38,70)(29,79,39,69)(30,78,40,68)(41,113,51,103)(42,112,52,102)(43,111,53,101)(44,110,54,120)(45,109,55,119)(46,108,56,118)(47,107,57,117)(48,106,58,116)(49,105,59,115)(50,104,60,114)>;
G:=Group( (1,11)(3,13)(5,15)(7,17)(9,19)(22,32)(24,34)(26,36)(28,38)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(62,72)(64,74)(66,76)(68,78)(70,80)(81,91)(83,93)(85,95)(87,97)(89,99)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,71,115)(2,116,72)(3,73,117)(4,118,74)(5,75,119)(6,120,76)(7,77,101)(8,102,78)(9,79,103)(10,104,80)(11,61,105)(12,106,62)(13,63,107)(14,108,64)(15,65,109)(16,110,66)(17,67,111)(18,112,68)(19,69,113)(20,114,70)(21,43,99)(22,100,44)(23,45,81)(24,82,46)(25,47,83)(26,84,48)(27,49,85)(28,86,50)(29,51,87)(30,88,52)(31,53,89)(32,90,54)(33,55,91)(34,92,56)(35,57,93)(36,94,58)(37,59,95)(38,96,60)(39,41,97)(40,98,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,85,11,95)(2,84,12,94)(3,83,13,93)(4,82,14,92)(5,81,15,91)(6,100,16,90)(7,99,17,89)(8,98,18,88)(9,97,19,87)(10,96,20,86)(21,67,31,77)(22,66,32,76)(23,65,33,75)(24,64,34,74)(25,63,35,73)(26,62,36,72)(27,61,37,71)(28,80,38,70)(29,79,39,69)(30,78,40,68)(41,113,51,103)(42,112,52,102)(43,111,53,101)(44,110,54,120)(45,109,55,119)(46,108,56,118)(47,107,57,117)(48,106,58,116)(49,105,59,115)(50,104,60,114) );
G=PermutationGroup([(1,11),(3,13),(5,15),(7,17),(9,19),(22,32),(24,34),(26,36),(28,38),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(62,72),(64,74),(66,76),(68,78),(70,80),(81,91),(83,93),(85,95),(87,97),(89,99),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100)], [(1,71,115),(2,116,72),(3,73,117),(4,118,74),(5,75,119),(6,120,76),(7,77,101),(8,102,78),(9,79,103),(10,104,80),(11,61,105),(12,106,62),(13,63,107),(14,108,64),(15,65,109),(16,110,66),(17,67,111),(18,112,68),(19,69,113),(20,114,70),(21,43,99),(22,100,44),(23,45,81),(24,82,46),(25,47,83),(26,84,48),(27,49,85),(28,86,50),(29,51,87),(30,88,52),(31,53,89),(32,90,54),(33,55,91),(34,92,56),(35,57,93),(36,94,58),(37,59,95),(38,96,60),(39,41,97),(40,98,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,85,11,95),(2,84,12,94),(3,83,13,93),(4,82,14,92),(5,81,15,91),(6,100,16,90),(7,99,17,89),(8,98,18,88),(9,97,19,87),(10,96,20,86),(21,67,31,77),(22,66,32,76),(23,65,33,75),(24,64,34,74),(25,63,35,73),(26,62,36,72),(27,61,37,71),(28,80,38,70),(29,79,39,69),(30,78,40,68),(41,113,51,103),(42,112,52,102),(43,111,53,101),(44,110,54,120),(45,109,55,119),(46,108,56,118),(47,107,57,117),(48,106,58,116),(49,105,59,115),(50,104,60,114)])
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 15A | 15B | 20A | ··· | 20H | 30A | 30B |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 20 | ··· | 20 | 30 | 30 |
size | 1 | 1 | 3 | 3 | 8 | 10 | 12 | 12 | 30 | 60 | 60 | 2 | 2 | 8 | 2 | 2 | 6 | 6 | 6 | 6 | 40 | 40 | 16 | 16 | 12 | ··· | 12 | 16 | 16 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | - | + | + | + | - | - | + | + | + | - | - | + | - |
image | C1 | C2 | C2 | C2 | S3 | Q8 | D5 | D6 | D10 | Dic6 | Dic10 | S4 | C2×S4 | S3×D5 | C15⋊Q8 | A4⋊Q8 | D5×S4 | A4⋊Dic10 |
kernel | A4⋊Dic10 | C5×A4⋊C4 | A4⋊Dic5 | A4×Dic5 | C22×Dic5 | C5×A4 | A4⋊C4 | C22×C10 | C2×A4 | C2×C10 | A4 | Dic5 | C10 | C23 | C22 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 1 | 4 | 4 |
Matrix representation of A4⋊Dic10 ►in GL5(𝔽61)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 60 | 60 | 60 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 | 60 |
0 | 0 | 0 | 1 | 0 |
12 | 34 | 0 | 0 | 0 |
33 | 58 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 60 | 0 |
55 | 30 | 0 | 0 | 0 |
13 | 6 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 60 |
G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,60,0,0,0,1,60,0],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,60,0,1,0,0,60,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,60,0,0,0,0,60,1,0,0,0,60,0],[12,33,0,0,0,34,58,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,60,0],[55,13,0,0,0,30,6,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60] >;
A4⋊Dic10 in GAP, Magma, Sage, TeX
A_4\rtimes {\rm Dic}_{10}
% in TeX
G:=Group("A4:Dic10");
// GroupNames label
G:=SmallGroup(480,975);
// by ID
G=gap.SmallGroup(480,975);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,28,85,36,234,3364,5052,1286,2953,2232]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^20=1,e^2=d^10,c*a*c^-1=d*a*d^-1=a*b=b*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations