Copied to
clipboard

G = D14.5D4order 224 = 25·7

2nd non-split extension by D14 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D14.5D4, C4⋊C42D7, C2.12(D4×D7), D14⋊C413C2, Dic7⋊C46C2, (C2×D28).3C2, (C2×C4).11D14, C14.25(C2×D4), C2.14(C4○D28), C14.12(C4○D4), (C2×C14).35C23, (C2×C28).57C22, C2.5(Q82D7), C73(C22.D4), (C22×D7).6C22, C22.49(C22×D7), (C2×Dic7).11C22, (C7×C4⋊C4)⋊5C2, (C2×C4×D7)⋊13C2, SmallGroup(224,89)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D14.5D4
C1C7C14C2×C14C22×D7C2×C4×D7 — D14.5D4
C7C2×C14 — D14.5D4
C1C22C4⋊C4

Generators and relations for D14.5D4
 G = < a,b,c,d | a14=b2=c4=1, d2=a7, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a7b, dcd-1=c-1 >

Subgroups: 374 in 78 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, D7, C14, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, D14, D14, C2×C14, C22.D4, C4×D7, D28, C2×Dic7, C2×C28, C22×D7, Dic7⋊C4, D14⋊C4, C7×C4⋊C4, C2×C4×D7, C2×D28, D14.5D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22.D4, C22×D7, C4○D28, D4×D7, Q82D7, D14.5D4

Smallest permutation representation of D14.5D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 105)(16 104)(17 103)(18 102)(19 101)(20 100)(21 99)(22 112)(23 111)(24 110)(25 109)(26 108)(27 107)(28 106)(43 74)(44 73)(45 72)(46 71)(47 84)(48 83)(49 82)(50 81)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 85)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)
(1 112 63 50)(2 99 64 51)(3 100 65 52)(4 101 66 53)(5 102 67 54)(6 103 68 55)(7 104 69 56)(8 105 70 43)(9 106 57 44)(10 107 58 45)(11 108 59 46)(12 109 60 47)(13 110 61 48)(14 111 62 49)(15 93 74 42)(16 94 75 29)(17 95 76 30)(18 96 77 31)(19 97 78 32)(20 98 79 33)(21 85 80 34)(22 86 81 35)(23 87 82 36)(24 88 83 37)(25 89 84 38)(26 90 71 39)(27 91 72 40)(28 92 73 41)
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 49 22 56)(16 50 23 43)(17 51 24 44)(18 52 25 45)(19 53 26 46)(20 54 27 47)(21 55 28 48)(57 95 64 88)(58 96 65 89)(59 97 66 90)(60 98 67 91)(61 85 68 92)(62 86 69 93)(63 87 70 94)(71 108 78 101)(72 109 79 102)(73 110 80 103)(74 111 81 104)(75 112 82 105)(76 99 83 106)(77 100 84 107)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(43,74)(44,73)(45,72)(46,71)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,85)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86), (1,112,63,50)(2,99,64,51)(3,100,65,52)(4,101,66,53)(5,102,67,54)(6,103,68,55)(7,104,69,56)(8,105,70,43)(9,106,57,44)(10,107,58,45)(11,108,59,46)(12,109,60,47)(13,110,61,48)(14,111,62,49)(15,93,74,42)(16,94,75,29)(17,95,76,30)(18,96,77,31)(19,97,78,32)(20,98,79,33)(21,85,80,34)(22,86,81,35)(23,87,82,36)(24,88,83,37)(25,89,84,38)(26,90,71,39)(27,91,72,40)(28,92,73,41), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,49,22,56)(16,50,23,43)(17,51,24,44)(18,52,25,45)(19,53,26,46)(20,54,27,47)(21,55,28,48)(57,95,64,88)(58,96,65,89)(59,97,66,90)(60,98,67,91)(61,85,68,92)(62,86,69,93)(63,87,70,94)(71,108,78,101)(72,109,79,102)(73,110,80,103)(74,111,81,104)(75,112,82,105)(76,99,83,106)(77,100,84,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(43,74)(44,73)(45,72)(46,71)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,85)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86), (1,112,63,50)(2,99,64,51)(3,100,65,52)(4,101,66,53)(5,102,67,54)(6,103,68,55)(7,104,69,56)(8,105,70,43)(9,106,57,44)(10,107,58,45)(11,108,59,46)(12,109,60,47)(13,110,61,48)(14,111,62,49)(15,93,74,42)(16,94,75,29)(17,95,76,30)(18,96,77,31)(19,97,78,32)(20,98,79,33)(21,85,80,34)(22,86,81,35)(23,87,82,36)(24,88,83,37)(25,89,84,38)(26,90,71,39)(27,91,72,40)(28,92,73,41), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,49,22,56)(16,50,23,43)(17,51,24,44)(18,52,25,45)(19,53,26,46)(20,54,27,47)(21,55,28,48)(57,95,64,88)(58,96,65,89)(59,97,66,90)(60,98,67,91)(61,85,68,92)(62,86,69,93)(63,87,70,94)(71,108,78,101)(72,109,79,102)(73,110,80,103)(74,111,81,104)(75,112,82,105)(76,99,83,106)(77,100,84,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,105),(16,104),(17,103),(18,102),(19,101),(20,100),(21,99),(22,112),(23,111),(24,110),(25,109),(26,108),(27,107),(28,106),(43,74),(44,73),(45,72),(46,71),(47,84),(48,83),(49,82),(50,81),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,85),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86)], [(1,112,63,50),(2,99,64,51),(3,100,65,52),(4,101,66,53),(5,102,67,54),(6,103,68,55),(7,104,69,56),(8,105,70,43),(9,106,57,44),(10,107,58,45),(11,108,59,46),(12,109,60,47),(13,110,61,48),(14,111,62,49),(15,93,74,42),(16,94,75,29),(17,95,76,30),(18,96,77,31),(19,97,78,32),(20,98,79,33),(21,85,80,34),(22,86,81,35),(23,87,82,36),(24,88,83,37),(25,89,84,38),(26,90,71,39),(27,91,72,40),(28,92,73,41)], [(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,49,22,56),(16,50,23,43),(17,51,24,44),(18,52,25,45),(19,53,26,46),(20,54,27,47),(21,55,28,48),(57,95,64,88),(58,96,65,89),(59,97,66,90),(60,98,67,91),(61,85,68,92),(62,86,69,93),(63,87,70,94),(71,108,78,101),(72,109,79,102),(73,110,80,103),(74,111,81,104),(75,112,82,105),(76,99,83,106),(77,100,84,107)]])

D14.5D4 is a maximal subgroup of
C14.2- 1+4  C14.112+ 1+4  C14.62- 1+4  C4210D14  C42.93D14  C42.100D14  C42.104D14  C4212D14  D2823D4  C4217D14  C42.131D14  C42.132D14  C42.133D14  C42.136D14  C14.372+ 1+4  C14.402+ 1+4  C14.442+ 1+4  C14.482+ 1+4  C4⋊C426D14  C14.162- 1+4  D2821D4  D2822D4  C14.532+ 1+4  C14.202- 1+4  C14.222- 1+4  C14.562+ 1+4  C14.572+ 1+4  C14.262- 1+4  D7×C22.D4  C14.1202+ 1+4  C14.1212+ 1+4  C14.822- 1+4  C14.612+ 1+4  C14.662+ 1+4  C14.672+ 1+4  C14.862- 1+4  C42.237D14  C42.150D14  C42.151D14  C42.152D14  C42.153D14  C42.156D14  C42.157D14  C42.158D14  C4223D14  C4224D14  C42.189D14  C42.161D14  C42.163D14  C42.164D14  C4225D14  C42.171D14  D2812D4  C42.178D14  C42.180D14
D14.5D4 is a maximal quotient of
C14.(C4×D4)  (C2×C4).Dic14  C22.58(D4×D7)  (C2×C4)⋊9D28  D14⋊C45C4  (C2×Dic7)⋊3D4  (C22×D7).9D4  D14.2SD16  D14.4SD16  C4.Q8⋊D7  C28.(C4○D4)  D14.5D8  D14.2Q16  C2.D8⋊D7  C2.D87D7  C4⋊C45Dic7  (C2×C28).54D4  D14⋊C46C4  D14⋊C47C4  (C2×C4)⋊3D28  (C2×C28).289D4  (C2×C28).290D4

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C14A···14I28A···28R
order1222222444444477714···1428···28
size111114142822441414282222···24···4

44 irreducible representations

dim1111112222244
type+++++++++++
imageC1C2C2C2C2C2D4D7C4○D4D14C4○D28D4×D7Q82D7
kernelD14.5D4Dic7⋊C4D14⋊C4C7×C4⋊C4C2×C4×D7C2×D28D14C4⋊C4C14C2×C4C2C2C2
# reps11311123491233

Matrix representation of D14.5D4 in GL4(𝔽29) generated by

251900
15100
00280
00028
,
222500
12700
00526
00824
,
111500
211800
00120
001117
,
132300
91600
00243
0015
G:=sub<GL(4,GF(29))| [25,15,0,0,19,1,0,0,0,0,28,0,0,0,0,28],[22,12,0,0,25,7,0,0,0,0,5,8,0,0,26,24],[11,21,0,0,15,18,0,0,0,0,12,11,0,0,0,17],[13,9,0,0,23,16,0,0,0,0,24,1,0,0,3,5] >;

D14.5D4 in GAP, Magma, Sage, TeX

D_{14}._5D_4
% in TeX

G:=Group("D14.5D4");
// GroupNames label

G:=SmallGroup(224,89);
// by ID

G=gap.SmallGroup(224,89);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,55,218,188,86,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^4=1,d^2=a^7,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^7*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽