metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D28⋊22D4, C14.182- 1+4, C22⋊Q8⋊8D7, C7⋊5(D4⋊6D4), C4.112(D4×D7), C4⋊C4.189D14, D14.21(C2×D4), C28.235(C2×D4), D28⋊C4⋊26C2, D14⋊D4⋊25C2, D14⋊2Q8⋊25C2, Dic7⋊5(C4○D4), (C2×Q8).126D14, C22⋊C4.16D14, C14.77(C22×D4), Dic7⋊Q8⋊14C2, D14.D4⋊25C2, D14.5D4⋊18C2, (C2×C28).503C23, (C2×C14).175C24, D14⋊C4.23C22, (C22×C4).237D14, (C2×D28).149C22, Dic7⋊C4.27C22, C4⋊Dic7.215C22, (Q8×C14).107C22, C22.196(C23×D7), C23.119(C22×D7), (C22×C28).255C22, (C22×C14).203C23, (C4×Dic7).105C22, (C2×Dic7).234C23, (C22×D7).197C23, C23.D7.116C22, C2.19(Q8.10D14), (C2×Dic14).294C22, C2.50(C2×D4×D7), (D7×C4⋊C4)⋊26C2, (C4×C7⋊D4)⋊23C2, C2.49(D7×C4○D4), (C2×C4○D28)⋊24C2, (C2×Q8⋊2D7)⋊8C2, (C7×C22⋊Q8)⋊11C2, (C2×C4×D7).95C22, C14.161(C2×C4○D4), (C2×C4).48(C22×D7), (C7×C4⋊C4).158C22, (C2×C7⋊D4).123C22, (C7×C22⋊C4).30C22, SmallGroup(448,1084)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D28⋊22D4
G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, cac-1=dad=a13, cbc-1=a12b, dbd=a26b, dcd=c-1 >
Subgroups: 1404 in 292 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, Dic14, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×Q8, C22×D7, C22×D7, C22×C14, D4⋊6D4, C4×Dic7, Dic7⋊C4, Dic7⋊C4, C4⋊Dic7, D14⋊C4, D14⋊C4, C23.D7, C7×C22⋊C4, C7×C4⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, C4○D28, Q8⋊2D7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, Q8×C14, D14.D4, D14⋊D4, D7×C4⋊C4, D28⋊C4, D14.5D4, D14⋊2Q8, C4×C7⋊D4, Dic7⋊Q8, C7×C22⋊Q8, C2×C4○D28, C2×Q8⋊2D7, D28⋊22D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, 2- 1+4, C22×D7, D4⋊6D4, D4×D7, C23×D7, C2×D4×D7, Q8.10D14, D7×C4○D4, D28⋊22D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 175)(2 174)(3 173)(4 172)(5 171)(6 170)(7 169)(8 196)(9 195)(10 194)(11 193)(12 192)(13 191)(14 190)(15 189)(16 188)(17 187)(18 186)(19 185)(20 184)(21 183)(22 182)(23 181)(24 180)(25 179)(26 178)(27 177)(28 176)(29 91)(30 90)(31 89)(32 88)(33 87)(34 86)(35 85)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(43 105)(44 104)(45 103)(46 102)(47 101)(48 100)(49 99)(50 98)(51 97)(52 96)(53 95)(54 94)(55 93)(56 92)(57 165)(58 164)(59 163)(60 162)(61 161)(62 160)(63 159)(64 158)(65 157)(66 156)(67 155)(68 154)(69 153)(70 152)(71 151)(72 150)(73 149)(74 148)(75 147)(76 146)(77 145)(78 144)(79 143)(80 142)(81 141)(82 168)(83 167)(84 166)(113 215)(114 214)(115 213)(116 212)(117 211)(118 210)(119 209)(120 208)(121 207)(122 206)(123 205)(124 204)(125 203)(126 202)(127 201)(128 200)(129 199)(130 198)(131 197)(132 224)(133 223)(134 222)(135 221)(136 220)(137 219)(138 218)(139 217)(140 216)
(1 35 183 93)(2 48 184 106)(3 33 185 91)(4 46 186 104)(5 31 187 89)(6 44 188 102)(7 29 189 87)(8 42 190 100)(9 55 191 85)(10 40 192 98)(11 53 193 111)(12 38 194 96)(13 51 195 109)(14 36 196 94)(15 49 169 107)(16 34 170 92)(17 47 171 105)(18 32 172 90)(19 45 173 103)(20 30 174 88)(21 43 175 101)(22 56 176 86)(23 41 177 99)(24 54 178 112)(25 39 179 97)(26 52 180 110)(27 37 181 95)(28 50 182 108)(57 198 157 126)(58 211 158 139)(59 224 159 124)(60 209 160 137)(61 222 161 122)(62 207 162 135)(63 220 163 120)(64 205 164 133)(65 218 165 118)(66 203 166 131)(67 216 167 116)(68 201 168 129)(69 214 141 114)(70 199 142 127)(71 212 143 140)(72 197 144 125)(73 210 145 138)(74 223 146 123)(75 208 147 136)(76 221 148 121)(77 206 149 134)(78 219 150 119)(79 204 151 132)(80 217 152 117)(81 202 153 130)(82 215 154 115)(83 200 155 128)(84 213 156 113)
(1 139)(2 124)(3 137)(4 122)(5 135)(6 120)(7 133)(8 118)(9 131)(10 116)(11 129)(12 114)(13 127)(14 140)(15 125)(16 138)(17 123)(18 136)(19 121)(20 134)(21 119)(22 132)(23 117)(24 130)(25 115)(26 128)(27 113)(28 126)(29 164)(30 149)(31 162)(32 147)(33 160)(34 145)(35 158)(36 143)(37 156)(38 141)(39 154)(40 167)(41 152)(42 165)(43 150)(44 163)(45 148)(46 161)(47 146)(48 159)(49 144)(50 157)(51 142)(52 155)(53 168)(54 153)(55 166)(56 151)(57 108)(58 93)(59 106)(60 91)(61 104)(62 89)(63 102)(64 87)(65 100)(66 85)(67 98)(68 111)(69 96)(70 109)(71 94)(72 107)(73 92)(74 105)(75 90)(76 103)(77 88)(78 101)(79 86)(80 99)(81 112)(82 97)(83 110)(84 95)(169 197)(170 210)(171 223)(172 208)(173 221)(174 206)(175 219)(176 204)(177 217)(178 202)(179 215)(180 200)(181 213)(182 198)(183 211)(184 224)(185 209)(186 222)(187 207)(188 220)(189 205)(190 218)(191 203)(192 216)(193 201)(194 214)(195 199)(196 212)
G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,175)(2,174)(3,173)(4,172)(5,171)(6,170)(7,169)(8,196)(9,195)(10,194)(11,193)(12,192)(13,191)(14,190)(15,189)(16,188)(17,187)(18,186)(19,185)(20,184)(21,183)(22,182)(23,181)(24,180)(25,179)(26,178)(27,177)(28,176)(29,91)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,105)(44,104)(45,103)(46,102)(47,101)(48,100)(49,99)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92)(57,165)(58,164)(59,163)(60,162)(61,161)(62,160)(63,159)(64,158)(65,157)(66,156)(67,155)(68,154)(69,153)(70,152)(71,151)(72,150)(73,149)(74,148)(75,147)(76,146)(77,145)(78,144)(79,143)(80,142)(81,141)(82,168)(83,167)(84,166)(113,215)(114,214)(115,213)(116,212)(117,211)(118,210)(119,209)(120,208)(121,207)(122,206)(123,205)(124,204)(125,203)(126,202)(127,201)(128,200)(129,199)(130,198)(131,197)(132,224)(133,223)(134,222)(135,221)(136,220)(137,219)(138,218)(139,217)(140,216), (1,35,183,93)(2,48,184,106)(3,33,185,91)(4,46,186,104)(5,31,187,89)(6,44,188,102)(7,29,189,87)(8,42,190,100)(9,55,191,85)(10,40,192,98)(11,53,193,111)(12,38,194,96)(13,51,195,109)(14,36,196,94)(15,49,169,107)(16,34,170,92)(17,47,171,105)(18,32,172,90)(19,45,173,103)(20,30,174,88)(21,43,175,101)(22,56,176,86)(23,41,177,99)(24,54,178,112)(25,39,179,97)(26,52,180,110)(27,37,181,95)(28,50,182,108)(57,198,157,126)(58,211,158,139)(59,224,159,124)(60,209,160,137)(61,222,161,122)(62,207,162,135)(63,220,163,120)(64,205,164,133)(65,218,165,118)(66,203,166,131)(67,216,167,116)(68,201,168,129)(69,214,141,114)(70,199,142,127)(71,212,143,140)(72,197,144,125)(73,210,145,138)(74,223,146,123)(75,208,147,136)(76,221,148,121)(77,206,149,134)(78,219,150,119)(79,204,151,132)(80,217,152,117)(81,202,153,130)(82,215,154,115)(83,200,155,128)(84,213,156,113), (1,139)(2,124)(3,137)(4,122)(5,135)(6,120)(7,133)(8,118)(9,131)(10,116)(11,129)(12,114)(13,127)(14,140)(15,125)(16,138)(17,123)(18,136)(19,121)(20,134)(21,119)(22,132)(23,117)(24,130)(25,115)(26,128)(27,113)(28,126)(29,164)(30,149)(31,162)(32,147)(33,160)(34,145)(35,158)(36,143)(37,156)(38,141)(39,154)(40,167)(41,152)(42,165)(43,150)(44,163)(45,148)(46,161)(47,146)(48,159)(49,144)(50,157)(51,142)(52,155)(53,168)(54,153)(55,166)(56,151)(57,108)(58,93)(59,106)(60,91)(61,104)(62,89)(63,102)(64,87)(65,100)(66,85)(67,98)(68,111)(69,96)(70,109)(71,94)(72,107)(73,92)(74,105)(75,90)(76,103)(77,88)(78,101)(79,86)(80,99)(81,112)(82,97)(83,110)(84,95)(169,197)(170,210)(171,223)(172,208)(173,221)(174,206)(175,219)(176,204)(177,217)(178,202)(179,215)(180,200)(181,213)(182,198)(183,211)(184,224)(185,209)(186,222)(187,207)(188,220)(189,205)(190,218)(191,203)(192,216)(193,201)(194,214)(195,199)(196,212)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,175)(2,174)(3,173)(4,172)(5,171)(6,170)(7,169)(8,196)(9,195)(10,194)(11,193)(12,192)(13,191)(14,190)(15,189)(16,188)(17,187)(18,186)(19,185)(20,184)(21,183)(22,182)(23,181)(24,180)(25,179)(26,178)(27,177)(28,176)(29,91)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,105)(44,104)(45,103)(46,102)(47,101)(48,100)(49,99)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92)(57,165)(58,164)(59,163)(60,162)(61,161)(62,160)(63,159)(64,158)(65,157)(66,156)(67,155)(68,154)(69,153)(70,152)(71,151)(72,150)(73,149)(74,148)(75,147)(76,146)(77,145)(78,144)(79,143)(80,142)(81,141)(82,168)(83,167)(84,166)(113,215)(114,214)(115,213)(116,212)(117,211)(118,210)(119,209)(120,208)(121,207)(122,206)(123,205)(124,204)(125,203)(126,202)(127,201)(128,200)(129,199)(130,198)(131,197)(132,224)(133,223)(134,222)(135,221)(136,220)(137,219)(138,218)(139,217)(140,216), (1,35,183,93)(2,48,184,106)(3,33,185,91)(4,46,186,104)(5,31,187,89)(6,44,188,102)(7,29,189,87)(8,42,190,100)(9,55,191,85)(10,40,192,98)(11,53,193,111)(12,38,194,96)(13,51,195,109)(14,36,196,94)(15,49,169,107)(16,34,170,92)(17,47,171,105)(18,32,172,90)(19,45,173,103)(20,30,174,88)(21,43,175,101)(22,56,176,86)(23,41,177,99)(24,54,178,112)(25,39,179,97)(26,52,180,110)(27,37,181,95)(28,50,182,108)(57,198,157,126)(58,211,158,139)(59,224,159,124)(60,209,160,137)(61,222,161,122)(62,207,162,135)(63,220,163,120)(64,205,164,133)(65,218,165,118)(66,203,166,131)(67,216,167,116)(68,201,168,129)(69,214,141,114)(70,199,142,127)(71,212,143,140)(72,197,144,125)(73,210,145,138)(74,223,146,123)(75,208,147,136)(76,221,148,121)(77,206,149,134)(78,219,150,119)(79,204,151,132)(80,217,152,117)(81,202,153,130)(82,215,154,115)(83,200,155,128)(84,213,156,113), (1,139)(2,124)(3,137)(4,122)(5,135)(6,120)(7,133)(8,118)(9,131)(10,116)(11,129)(12,114)(13,127)(14,140)(15,125)(16,138)(17,123)(18,136)(19,121)(20,134)(21,119)(22,132)(23,117)(24,130)(25,115)(26,128)(27,113)(28,126)(29,164)(30,149)(31,162)(32,147)(33,160)(34,145)(35,158)(36,143)(37,156)(38,141)(39,154)(40,167)(41,152)(42,165)(43,150)(44,163)(45,148)(46,161)(47,146)(48,159)(49,144)(50,157)(51,142)(52,155)(53,168)(54,153)(55,166)(56,151)(57,108)(58,93)(59,106)(60,91)(61,104)(62,89)(63,102)(64,87)(65,100)(66,85)(67,98)(68,111)(69,96)(70,109)(71,94)(72,107)(73,92)(74,105)(75,90)(76,103)(77,88)(78,101)(79,86)(80,99)(81,112)(82,97)(83,110)(84,95)(169,197)(170,210)(171,223)(172,208)(173,221)(174,206)(175,219)(176,204)(177,217)(178,202)(179,215)(180,200)(181,213)(182,198)(183,211)(184,224)(185,209)(186,222)(187,207)(188,220)(189,205)(190,218)(191,203)(192,216)(193,201)(194,214)(195,199)(196,212) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,175),(2,174),(3,173),(4,172),(5,171),(6,170),(7,169),(8,196),(9,195),(10,194),(11,193),(12,192),(13,191),(14,190),(15,189),(16,188),(17,187),(18,186),(19,185),(20,184),(21,183),(22,182),(23,181),(24,180),(25,179),(26,178),(27,177),(28,176),(29,91),(30,90),(31,89),(32,88),(33,87),(34,86),(35,85),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(43,105),(44,104),(45,103),(46,102),(47,101),(48,100),(49,99),(50,98),(51,97),(52,96),(53,95),(54,94),(55,93),(56,92),(57,165),(58,164),(59,163),(60,162),(61,161),(62,160),(63,159),(64,158),(65,157),(66,156),(67,155),(68,154),(69,153),(70,152),(71,151),(72,150),(73,149),(74,148),(75,147),(76,146),(77,145),(78,144),(79,143),(80,142),(81,141),(82,168),(83,167),(84,166),(113,215),(114,214),(115,213),(116,212),(117,211),(118,210),(119,209),(120,208),(121,207),(122,206),(123,205),(124,204),(125,203),(126,202),(127,201),(128,200),(129,199),(130,198),(131,197),(132,224),(133,223),(134,222),(135,221),(136,220),(137,219),(138,218),(139,217),(140,216)], [(1,35,183,93),(2,48,184,106),(3,33,185,91),(4,46,186,104),(5,31,187,89),(6,44,188,102),(7,29,189,87),(8,42,190,100),(9,55,191,85),(10,40,192,98),(11,53,193,111),(12,38,194,96),(13,51,195,109),(14,36,196,94),(15,49,169,107),(16,34,170,92),(17,47,171,105),(18,32,172,90),(19,45,173,103),(20,30,174,88),(21,43,175,101),(22,56,176,86),(23,41,177,99),(24,54,178,112),(25,39,179,97),(26,52,180,110),(27,37,181,95),(28,50,182,108),(57,198,157,126),(58,211,158,139),(59,224,159,124),(60,209,160,137),(61,222,161,122),(62,207,162,135),(63,220,163,120),(64,205,164,133),(65,218,165,118),(66,203,166,131),(67,216,167,116),(68,201,168,129),(69,214,141,114),(70,199,142,127),(71,212,143,140),(72,197,144,125),(73,210,145,138),(74,223,146,123),(75,208,147,136),(76,221,148,121),(77,206,149,134),(78,219,150,119),(79,204,151,132),(80,217,152,117),(81,202,153,130),(82,215,154,115),(83,200,155,128),(84,213,156,113)], [(1,139),(2,124),(3,137),(4,122),(5,135),(6,120),(7,133),(8,118),(9,131),(10,116),(11,129),(12,114),(13,127),(14,140),(15,125),(16,138),(17,123),(18,136),(19,121),(20,134),(21,119),(22,132),(23,117),(24,130),(25,115),(26,128),(27,113),(28,126),(29,164),(30,149),(31,162),(32,147),(33,160),(34,145),(35,158),(36,143),(37,156),(38,141),(39,154),(40,167),(41,152),(42,165),(43,150),(44,163),(45,148),(46,161),(47,146),(48,159),(49,144),(50,157),(51,142),(52,155),(53,168),(54,153),(55,166),(56,151),(57,108),(58,93),(59,106),(60,91),(61,104),(62,89),(63,102),(64,87),(65,100),(66,85),(67,98),(68,111),(69,96),(70,109),(71,94),(72,107),(73,92),(74,105),(75,90),(76,103),(77,88),(78,101),(79,86),(80,99),(81,112),(82,97),(83,110),(84,95),(169,197),(170,210),(171,223),(172,208),(173,221),(174,206),(175,219),(176,204),(177,217),(178,202),(179,215),(180,200),(181,213),(182,198),(183,211),(184,224),(185,209),(186,222),(187,207),(188,220),(189,205),(190,218),(191,203),(192,216),(193,201),(194,214),(195,199),(196,212)]])
67 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 7A | 7B | 7C | 14A | ··· | 14I | 14J | ··· | 14O | 28A | ··· | 28L | 28M | ··· | 28X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 4 | 14 | 14 | 14 | 14 | 28 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
67 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D7 | C4○D4 | D14 | D14 | D14 | D14 | 2- 1+4 | D4×D7 | Q8.10D14 | D7×C4○D4 |
kernel | D28⋊22D4 | D14.D4 | D14⋊D4 | D7×C4⋊C4 | D28⋊C4 | D14.5D4 | D14⋊2Q8 | C4×C7⋊D4 | Dic7⋊Q8 | C7×C22⋊Q8 | C2×C4○D28 | C2×Q8⋊2D7 | D28 | C22⋊Q8 | Dic7 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×Q8 | C14 | C4 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 4 | 6 | 9 | 3 | 3 | 1 | 6 | 6 | 6 |
Matrix representation of D28⋊22D4 ►in GL6(𝔽29)
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 26 | 0 | 0 |
0 | 0 | 3 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 26 | 0 | 0 |
0 | 0 | 21 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 9 |
0 | 0 | 0 | 0 | 20 | 15 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 15 |
0 | 0 | 0 | 0 | 14 | 9 |
G:=sub<GL(6,GF(29))| [0,12,0,0,0,0,12,0,0,0,0,0,0,0,8,3,0,0,0,0,26,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,8,21,0,0,0,0,26,21,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,28,0,0,0,0,0,0,14,20,0,0,0,0,9,15],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,28,0,0,0,0,0,0,20,14,0,0,0,0,15,9] >;
D28⋊22D4 in GAP, Magma, Sage, TeX
D_{28}\rtimes_{22}D_4
% in TeX
G:=Group("D28:22D4");
// GroupNames label
G:=SmallGroup(448,1084);
// by ID
G=gap.SmallGroup(448,1084);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,120,219,268,1571,570,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^13,c*b*c^-1=a^12*b,d*b*d=a^26*b,d*c*d=c^-1>;
// generators/relations