extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1D10 = Dic5.D6 | φ: D10/C5 → C22 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).1D10 | 240,140 |
(C2×C6).2D10 = C30.C23 | φ: D10/C5 → C22 ⊆ Aut C2×C6 | 120 | 4- | (C2xC6).2D10 | 240,141 |
(C2×C6).3D10 = D4⋊2D15 | φ: D10/C5 → C22 ⊆ Aut C2×C6 | 120 | 4- | (C2xC6).3D10 | 240,180 |
(C2×C6).4D10 = C3×D4⋊2D5 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).4D10 | 240,160 |
(C2×C6).5D10 = Dic3×Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).5D10 | 240,25 |
(C2×C6).6D10 = D10⋊Dic3 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).6D10 | 240,26 |
(C2×C6).7D10 = D6⋊Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).7D10 | 240,27 |
(C2×C6).8D10 = D30⋊4C4 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).8D10 | 240,28 |
(C2×C6).9D10 = C30.Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).9D10 | 240,29 |
(C2×C6).10D10 = Dic15⋊5C4 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).10D10 | 240,30 |
(C2×C6).11D10 = C6.Dic10 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).11D10 | 240,31 |
(C2×C6).12D10 = C2×D5×Dic3 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).12D10 | 240,139 |
(C2×C6).13D10 = C2×S3×Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).13D10 | 240,142 |
(C2×C6).14D10 = Dic3.D10 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).14D10 | 240,143 |
(C2×C6).15D10 = C2×D30.C2 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).15D10 | 240,144 |
(C2×C6).16D10 = C2×C15⋊D4 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).16D10 | 240,145 |
(C2×C6).17D10 = C2×C3⋊D20 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).17D10 | 240,146 |
(C2×C6).18D10 = C2×C5⋊D12 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).18D10 | 240,147 |
(C2×C6).19D10 = C2×C15⋊Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).19D10 | 240,148 |
(C2×C6).20D10 = C3×C4○D20 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 120 | 2 | (C2xC6).20D10 | 240,158 |
(C2×C6).21D10 = C4×Dic15 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).21D10 | 240,72 |
(C2×C6).22D10 = C30.4Q8 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).22D10 | 240,73 |
(C2×C6).23D10 = C60⋊5C4 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).23D10 | 240,74 |
(C2×C6).24D10 = D30⋊3C4 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).24D10 | 240,75 |
(C2×C6).25D10 = C30.38D4 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).25D10 | 240,80 |
(C2×C6).26D10 = C2×Dic30 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).26D10 | 240,175 |
(C2×C6).27D10 = C2×C4×D15 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).27D10 | 240,176 |
(C2×C6).28D10 = C2×D60 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 120 | | (C2xC6).28D10 | 240,177 |
(C2×C6).29D10 = D60⋊11C2 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 120 | 2 | (C2xC6).29D10 | 240,178 |
(C2×C6).30D10 = C22×Dic15 | φ: D10/C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).30D10 | 240,183 |
(C2×C6).31D10 = C12×Dic5 | central extension (φ=1) | 240 | | (C2xC6).31D10 | 240,40 |
(C2×C6).32D10 = C3×C10.D4 | central extension (φ=1) | 240 | | (C2xC6).32D10 | 240,41 |
(C2×C6).33D10 = C3×C4⋊Dic5 | central extension (φ=1) | 240 | | (C2xC6).33D10 | 240,42 |
(C2×C6).34D10 = C3×D10⋊C4 | central extension (φ=1) | 120 | | (C2xC6).34D10 | 240,43 |
(C2×C6).35D10 = C3×C23.D5 | central extension (φ=1) | 120 | | (C2xC6).35D10 | 240,48 |
(C2×C6).36D10 = C6×Dic10 | central extension (φ=1) | 240 | | (C2xC6).36D10 | 240,155 |
(C2×C6).37D10 = D5×C2×C12 | central extension (φ=1) | 120 | | (C2xC6).37D10 | 240,156 |
(C2×C6).38D10 = C6×D20 | central extension (φ=1) | 120 | | (C2xC6).38D10 | 240,157 |
(C2×C6).39D10 = C2×C6×Dic5 | central extension (φ=1) | 240 | | (C2xC6).39D10 | 240,163 |