metabelian, supersoluble, monomial
Aliases: C62.110D4, (C2×C6).10D12, C62⋊5C4⋊2C2, C6.21(D6⋊C4), C32⋊7(C23⋊C4), C62.39(C2×C4), (C22×C6).56D6, C3⋊2(C23.6D6), (C2×C62).11C22, C22.2(C12⋊S3), C2.4(C6.11D12), C22.8(C32⋊7D4), (C22×C3⋊S3)⋊2C4, (C3×C22⋊C4)⋊2S3, (C2×C6).13(C4×S3), (C2×C3⋊Dic3)⋊2C4, C23.6(C2×C3⋊S3), C22.3(C4×C3⋊S3), C22⋊C4⋊1(C3⋊S3), (C2×C6).86(C3⋊D4), (C32×C22⋊C4)⋊2C2, (C2×C32⋊7D4).2C2, (C3×C6).52(C22⋊C4), SmallGroup(288,281)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — C22⋊C4 |
Generators and relations for C62.110D4
G = < a,b,c,d | a6=b6=c4=d2=1, ab=ba, cac-1=dad=a-1b3, cbc-1=dbd=b-1, dcd=a3c-1 >
Subgroups: 732 in 156 conjugacy classes, 47 normal (19 characteristic)
C1, C2, C2 [×4], C3 [×4], C4 [×3], C22 [×3], C22 [×3], S3 [×4], C6 [×4], C6 [×12], C2×C4 [×3], D4 [×2], C23, C23, C32, Dic3 [×8], C12 [×4], D6 [×8], C2×C6 [×12], C2×C6 [×4], C22⋊C4, C22⋊C4, C2×D4, C3⋊S3, C3×C6, C3×C6 [×3], C2×Dic3 [×8], C3⋊D4 [×8], C2×C12 [×4], C22×S3 [×4], C22×C6 [×4], C23⋊C4, C3⋊Dic3 [×2], C3×C12, C2×C3⋊S3 [×2], C62 [×3], C62, C6.D4 [×4], C3×C22⋊C4 [×4], C2×C3⋊D4 [×4], C2×C3⋊Dic3, C2×C3⋊Dic3, C32⋊7D4 [×2], C6×C12, C22×C3⋊S3, C2×C62, C23.6D6 [×4], C62⋊5C4, C32×C22⋊C4, C2×C32⋊7D4, C62.110D4
Quotients: C1, C2 [×3], C4 [×2], C22, S3 [×4], C2×C4, D4 [×2], D6 [×4], C22⋊C4, C3⋊S3, C4×S3 [×4], D12 [×4], C3⋊D4 [×4], C23⋊C4, C2×C3⋊S3, D6⋊C4 [×4], C4×C3⋊S3, C12⋊S3, C32⋊7D4, C23.6D6 [×4], C6.11D12, C62.110D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 54 61 16 24 58)(2 49 62 17 19 59)(3 50 63 18 20 60)(4 51 64 13 21 55)(5 52 65 14 22 56)(6 53 66 15 23 57)(7 38 30 33 72 44)(8 39 25 34 67 45)(9 40 26 35 68 46)(10 41 27 36 69 47)(11 42 28 31 70 48)(12 37 29 32 71 43)
(2 15)(3 5)(4 13)(6 17)(7 45 33 25)(8 30 34 44)(9 43 35 29)(10 28 36 48)(11 47 31 27)(12 26 32 46)(14 18)(19 57)(20 65)(21 55)(22 63)(23 59)(24 61)(37 40 71 68)(38 67 72 39)(41 42 69 70)(49 66)(50 56)(51 64)(52 60)(53 62)(54 58)
(1 37)(2 70)(3 41)(4 68)(5 39)(6 72)(7 23)(8 52)(9 21)(10 50)(11 19)(12 54)(13 40)(14 67)(15 38)(16 71)(17 42)(18 69)(20 36)(22 34)(24 32)(25 56)(26 64)(27 60)(28 62)(29 58)(30 66)(31 49)(33 53)(35 51)(43 61)(44 57)(45 65)(46 55)(47 63)(48 59)
G:=sub<Sym(72)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,54,61,16,24,58)(2,49,62,17,19,59)(3,50,63,18,20,60)(4,51,64,13,21,55)(5,52,65,14,22,56)(6,53,66,15,23,57)(7,38,30,33,72,44)(8,39,25,34,67,45)(9,40,26,35,68,46)(10,41,27,36,69,47)(11,42,28,31,70,48)(12,37,29,32,71,43), (2,15)(3,5)(4,13)(6,17)(7,45,33,25)(8,30,34,44)(9,43,35,29)(10,28,36,48)(11,47,31,27)(12,26,32,46)(14,18)(19,57)(20,65)(21,55)(22,63)(23,59)(24,61)(37,40,71,68)(38,67,72,39)(41,42,69,70)(49,66)(50,56)(51,64)(52,60)(53,62)(54,58), (1,37)(2,70)(3,41)(4,68)(5,39)(6,72)(7,23)(8,52)(9,21)(10,50)(11,19)(12,54)(13,40)(14,67)(15,38)(16,71)(17,42)(18,69)(20,36)(22,34)(24,32)(25,56)(26,64)(27,60)(28,62)(29,58)(30,66)(31,49)(33,53)(35,51)(43,61)(44,57)(45,65)(46,55)(47,63)(48,59)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,54,61,16,24,58)(2,49,62,17,19,59)(3,50,63,18,20,60)(4,51,64,13,21,55)(5,52,65,14,22,56)(6,53,66,15,23,57)(7,38,30,33,72,44)(8,39,25,34,67,45)(9,40,26,35,68,46)(10,41,27,36,69,47)(11,42,28,31,70,48)(12,37,29,32,71,43), (2,15)(3,5)(4,13)(6,17)(7,45,33,25)(8,30,34,44)(9,43,35,29)(10,28,36,48)(11,47,31,27)(12,26,32,46)(14,18)(19,57)(20,65)(21,55)(22,63)(23,59)(24,61)(37,40,71,68)(38,67,72,39)(41,42,69,70)(49,66)(50,56)(51,64)(52,60)(53,62)(54,58), (1,37)(2,70)(3,41)(4,68)(5,39)(6,72)(7,23)(8,52)(9,21)(10,50)(11,19)(12,54)(13,40)(14,67)(15,38)(16,71)(17,42)(18,69)(20,36)(22,34)(24,32)(25,56)(26,64)(27,60)(28,62)(29,58)(30,66)(31,49)(33,53)(35,51)(43,61)(44,57)(45,65)(46,55)(47,63)(48,59) );
G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,54,61,16,24,58),(2,49,62,17,19,59),(3,50,63,18,20,60),(4,51,64,13,21,55),(5,52,65,14,22,56),(6,53,66,15,23,57),(7,38,30,33,72,44),(8,39,25,34,67,45),(9,40,26,35,68,46),(10,41,27,36,69,47),(11,42,28,31,70,48),(12,37,29,32,71,43)], [(2,15),(3,5),(4,13),(6,17),(7,45,33,25),(8,30,34,44),(9,43,35,29),(10,28,36,48),(11,47,31,27),(12,26,32,46),(14,18),(19,57),(20,65),(21,55),(22,63),(23,59),(24,61),(37,40,71,68),(38,67,72,39),(41,42,69,70),(49,66),(50,56),(51,64),(52,60),(53,62),(54,58)], [(1,37),(2,70),(3,41),(4,68),(5,39),(6,72),(7,23),(8,52),(9,21),(10,50),(11,19),(12,54),(13,40),(14,67),(15,38),(16,71),(17,42),(18,69),(20,36),(22,34),(24,32),(25,56),(26,64),(27,60),(28,62),(29,58),(30,66),(31,49),(33,53),(35,51),(43,61),(44,57),(45,65),(46,55),(47,63),(48,59)])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 4E | 6A | ··· | 6L | 6M | ··· | 6T | 12A | ··· | 12P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 36 | 2 | 2 | 2 | 2 | 4 | 4 | 36 | 36 | 36 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D6 | C4×S3 | D12 | C3⋊D4 | C23⋊C4 | C23.6D6 |
kernel | C62.110D4 | C62⋊5C4 | C32×C22⋊C4 | C2×C32⋊7D4 | C2×C3⋊Dic3 | C22×C3⋊S3 | C3×C22⋊C4 | C62 | C22×C6 | C2×C6 | C2×C6 | C2×C6 | C32 | C3 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 8 | 8 | 8 | 1 | 8 |
Matrix representation of C62.110D4 ►in GL6(𝔽13)
0 | 1 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 2 | 7 |
0 | 0 | 9 | 11 | 7 | 4 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 9 | 2 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 7 | 5 |
0 | 0 | 12 | 0 | 5 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 |
8 | 5 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 6 | 9 |
0 | 0 | 0 | 12 | 9 | 10 |
0 | 0 | 0 | 0 | 9 | 2 |
0 | 0 | 0 | 0 | 11 | 4 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 12 | 4 |
0 | 0 | 2 | 4 | 8 | 3 |
0 | 0 | 12 | 1 | 7 | 10 |
0 | 0 | 1 | 2 | 6 | 10 |
G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,1,1,0,0,0,0,0,0,2,9,0,0,0,0,4,11,0,0,0,0,2,7,11,9,0,0,7,4,4,2],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,7,5,0,12,0,0,5,1,1,1],[8,0,0,0,0,0,5,5,0,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,6,9,9,11,0,0,9,10,2,4],[12,0,0,0,0,0,1,1,0,0,0,0,0,0,5,2,12,1,0,0,5,4,1,2,0,0,12,8,7,6,0,0,4,3,10,10] >;
C62.110D4 in GAP, Magma, Sage, TeX
C_6^2._{110}D_4
% in TeX
G:=Group("C6^2.110D4");
// GroupNames label
G:=SmallGroup(288,281);
// by ID
G=gap.SmallGroup(288,281);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,422,346,2693,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=c^4=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=a^3*c^-1>;
// generators/relations