extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).(C3⋊D4) = C23.D18 | φ: C3⋊D4/C22 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).(C3:D4) | 288,342 |
(C2×C6).2(C3⋊D4) = C23⋊2Dic9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).2(C3:D4) | 288,41 |
(C2×C6).3(C3⋊D4) = Q8⋊3Dic9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).3(C3:D4) | 288,44 |
(C2×C6).4(C3⋊D4) = C23.23D18 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).4(C3:D4) | 288,145 |
(C2×C6).5(C3⋊D4) = C23⋊2D18 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).5(C3:D4) | 288,147 |
(C2×C6).6(C3⋊D4) = Dic9⋊D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).6(C3:D4) | 288,149 |
(C2×C6).7(C3⋊D4) = D4.D18 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | 4- | (C2xC6).7(C3:D4) | 288,159 |
(C2×C6).8(C3⋊D4) = D4⋊D18 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | 4+ | (C2xC6).8(C3:D4) | 288,160 |
(C2×C6).9(C3⋊D4) = D4.9D18 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).9(C3:D4) | 288,161 |
(C2×C6).10(C3⋊D4) = D12⋊4Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).10(C3:D4) | 288,216 |
(C2×C6).11(C3⋊D4) = C12.80D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).11(C3:D4) | 288,218 |
(C2×C6).12(C3⋊D4) = C62.31D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).12(C3:D4) | 288,228 |
(C2×C6).13(C3⋊D4) = C62.32D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).13(C3:D4) | 288,229 |
(C2×C6).14(C3⋊D4) = C62.38D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).14(C3:D4) | 288,309 |
(C2×C6).15(C3⋊D4) = C62.39D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).15(C3:D4) | 288,312 |
(C2×C6).16(C3⋊D4) = D12.30D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).16(C3:D4) | 288,470 |
(C2×C6).17(C3⋊D4) = D12⋊18D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).17(C3:D4) | 288,473 |
(C2×C6).18(C3⋊D4) = D12.32D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).18(C3:D4) | 288,475 |
(C2×C6).19(C3⋊D4) = D12.28D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).19(C3:D4) | 288,478 |
(C2×C6).20(C3⋊D4) = D12.29D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).20(C3:D4) | 288,479 |
(C2×C6).21(C3⋊D4) = Dic6.29D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).21(C3:D4) | 288,481 |
(C2×C6).22(C3⋊D4) = C62.56D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).22(C3:D4) | 288,609 |
(C2×C6).23(C3⋊D4) = C62.57D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).23(C3:D4) | 288,610 |
(C2×C6).24(C3⋊D4) = C62.60D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).24(C3:D4) | 288,614 |
(C2×C6).25(C3⋊D4) = C62.72D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).25(C3:D4) | 288,792 |
(C2×C6).26(C3⋊D4) = C62.73D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).26(C3:D4) | 288,806 |
(C2×C6).27(C3⋊D4) = C62.74D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).27(C3:D4) | 288,807 |
(C2×C6).28(C3⋊D4) = C62.75D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).28(C3:D4) | 288,808 |
(C2×C6).29(C3⋊D4) = C3×Q8.13D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).29(C3:D4) | 288,721 |
(C2×C6).30(C3⋊D4) = C6.16D24 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).30(C3:D4) | 288,211 |
(C2×C6).31(C3⋊D4) = C6.17D24 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).31(C3:D4) | 288,212 |
(C2×C6).32(C3⋊D4) = C6.Dic12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).32(C3:D4) | 288,214 |
(C2×C6).33(C3⋊D4) = C12.73D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).33(C3:D4) | 288,215 |
(C2×C6).34(C3⋊D4) = C12.Dic6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).34(C3:D4) | 288,221 |
(C2×C6).35(C3⋊D4) = C6.18D24 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).35(C3:D4) | 288,223 |
(C2×C6).36(C3⋊D4) = C2×C3⋊D24 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).36(C3:D4) | 288,472 |
(C2×C6).37(C3⋊D4) = C2×D12.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).37(C3:D4) | 288,476 |
(C2×C6).38(C3⋊D4) = D12.27D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).38(C3:D4) | 288,477 |
(C2×C6).39(C3⋊D4) = C2×C32⋊5SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).39(C3:D4) | 288,480 |
(C2×C6).40(C3⋊D4) = C2×C32⋊3Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40(C3:D4) | 288,483 |
(C2×C6).41(C3⋊D4) = C2×C6.D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).41(C3:D4) | 288,611 |
(C2×C6).42(C3⋊D4) = C2×Dic3⋊Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).42(C3:D4) | 288,613 |
(C2×C6).43(C3⋊D4) = C3×C23.7D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).43(C3:D4) | 288,268 |
(C2×C6).44(C3⋊D4) = C3×Q8⋊3Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).44(C3:D4) | 288,271 |
(C2×C6).45(C3⋊D4) = C3×C23.23D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).45(C3:D4) | 288,706 |
(C2×C6).46(C3⋊D4) = C3×D4⋊D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).46(C3:D4) | 288,720 |
(C2×C6).47(C3⋊D4) = C3×Q8.14D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).47(C3:D4) | 288,722 |
(C2×C6).48(C3⋊D4) = D12⋊3Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).48(C3:D4) | 288,210 |
(C2×C6).49(C3⋊D4) = Dic6⋊Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).49(C3:D4) | 288,213 |
(C2×C6).50(C3⋊D4) = D12⋊2Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).50(C3:D4) | 288,217 |
(C2×C6).51(C3⋊D4) = C12.6Dic6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).51(C3:D4) | 288,222 |
(C2×C6).52(C3⋊D4) = C12.8Dic6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).52(C3:D4) | 288,224 |
(C2×C6).53(C3⋊D4) = C62.6Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).53(C3:D4) | 288,227 |
(C2×C6).54(C3⋊D4) = C2×C32⋊2D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).54(C3:D4) | 288,469 |
(C2×C6).55(C3⋊D4) = D12⋊20D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).55(C3:D4) | 288,471 |
(C2×C6).56(C3⋊D4) = C2×Dic6⋊S3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).56(C3:D4) | 288,474 |
(C2×C6).57(C3⋊D4) = C2×C32⋊2Q16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).57(C3:D4) | 288,482 |
(C2×C6).58(C3⋊D4) = C2×D6⋊Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).58(C3:D4) | 288,608 |
(C2×C6).59(C3⋊D4) = C2×C62.C22 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).59(C3:D4) | 288,615 |
(C2×C6).60(C3⋊D4) = C3×C42⋊4S3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 2 | (C2xC6).60(C3:D4) | 288,239 |
(C2×C6).61(C3⋊D4) = C3×C23.6D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).61(C3:D4) | 288,240 |
(C2×C6).62(C3⋊D4) = C3×C23.28D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).62(C3:D4) | 288,700 |
(C2×C6).63(C3⋊D4) = C3×D12⋊6C22 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).63(C3:D4) | 288,703 |
(C2×C6).64(C3⋊D4) = C3×Q8.11D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).64(C3:D4) | 288,713 |
(C2×C6).65(C3⋊D4) = C42⋊4D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).65(C3:D4) | 288,12 |
(C2×C6).66(C3⋊D4) = C22.D36 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).66(C3:D4) | 288,13 |
(C2×C6).67(C3⋊D4) = C36.Q8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).67(C3:D4) | 288,14 |
(C2×C6).68(C3⋊D4) = C4.Dic18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).68(C3:D4) | 288,15 |
(C2×C6).69(C3⋊D4) = C18.Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).69(C3:D4) | 288,16 |
(C2×C6).70(C3⋊D4) = C18.D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).70(C3:D4) | 288,17 |
(C2×C6).71(C3⋊D4) = C18.C42 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).71(C3:D4) | 288,38 |
(C2×C6).72(C3⋊D4) = D4⋊Dic9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).72(C3:D4) | 288,40 |
(C2×C6).73(C3⋊D4) = Q8⋊2Dic9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).73(C3:D4) | 288,43 |
(C2×C6).74(C3⋊D4) = C2×Dic9⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).74(C3:D4) | 288,133 |
(C2×C6).75(C3⋊D4) = C2×D18⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).75(C3:D4) | 288,137 |
(C2×C6).76(C3⋊D4) = C23.28D18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).76(C3:D4) | 288,139 |
(C2×C6).77(C3⋊D4) = C2×D4.D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).77(C3:D4) | 288,141 |
(C2×C6).78(C3⋊D4) = C2×D4⋊D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).78(C3:D4) | 288,142 |
(C2×C6).79(C3⋊D4) = D36⋊6C22 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).79(C3:D4) | 288,143 |
(C2×C6).80(C3⋊D4) = C2×C9⋊Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).80(C3:D4) | 288,151 |
(C2×C6).81(C3⋊D4) = C2×Q8⋊2D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).81(C3:D4) | 288,152 |
(C2×C6).82(C3⋊D4) = C36.C23 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).82(C3:D4) | 288,153 |
(C2×C6).83(C3⋊D4) = C2×C18.D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).83(C3:D4) | 288,162 |
(C2×C6).84(C3⋊D4) = C24⋊4D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).84(C3:D4) | 288,163 |
(C2×C6).85(C3⋊D4) = C122⋊C2 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).85(C3:D4) | 288,280 |
(C2×C6).86(C3⋊D4) = C62.110D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).86(C3:D4) | 288,281 |
(C2×C6).87(C3⋊D4) = C12.9Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).87(C3:D4) | 288,282 |
(C2×C6).88(C3⋊D4) = C12.10Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).88(C3:D4) | 288,283 |
(C2×C6).89(C3⋊D4) = C62.113D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).89(C3:D4) | 288,284 |
(C2×C6).90(C3⋊D4) = C62.114D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).90(C3:D4) | 288,285 |
(C2×C6).91(C3⋊D4) = C62.15Q8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).91(C3:D4) | 288,306 |
(C2×C6).92(C3⋊D4) = C62.116D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).92(C3:D4) | 288,307 |
(C2×C6).93(C3⋊D4) = C62.117D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).93(C3:D4) | 288,310 |
(C2×C6).94(C3⋊D4) = C22×C9⋊D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).94(C3:D4) | 288,366 |
(C2×C6).95(C3⋊D4) = C2×C6.Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).95(C3:D4) | 288,780 |
(C2×C6).96(C3⋊D4) = C2×C6.11D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).96(C3:D4) | 288,784 |
(C2×C6).97(C3⋊D4) = C62.129D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).97(C3:D4) | 288,786 |
(C2×C6).98(C3⋊D4) = C2×C32⋊7D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).98(C3:D4) | 288,788 |
(C2×C6).99(C3⋊D4) = C62.131D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).99(C3:D4) | 288,789 |
(C2×C6).100(C3⋊D4) = C2×C32⋊9SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).100(C3:D4) | 288,790 |
(C2×C6).101(C3⋊D4) = C2×C32⋊11SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).101(C3:D4) | 288,798 |
(C2×C6).102(C3⋊D4) = C62.134D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).102(C3:D4) | 288,799 |
(C2×C6).103(C3⋊D4) = C2×C32⋊7Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).103(C3:D4) | 288,800 |
(C2×C6).104(C3⋊D4) = C2×C62⋊5C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).104(C3:D4) | 288,809 |
(C2×C6).105(C3⋊D4) = C3×C6.Q16 | central extension (φ=1) | 96 | | (C2xC6).105(C3:D4) | 288,241 |
(C2×C6).106(C3⋊D4) = C3×C12.Q8 | central extension (φ=1) | 96 | | (C2xC6).106(C3:D4) | 288,242 |
(C2×C6).107(C3⋊D4) = C3×C6.D8 | central extension (φ=1) | 96 | | (C2xC6).107(C3:D4) | 288,243 |
(C2×C6).108(C3⋊D4) = C3×C6.SD16 | central extension (φ=1) | 96 | | (C2xC6).108(C3:D4) | 288,244 |
(C2×C6).109(C3⋊D4) = C3×C6.C42 | central extension (φ=1) | 96 | | (C2xC6).109(C3:D4) | 288,265 |
(C2×C6).110(C3⋊D4) = C3×D4⋊Dic3 | central extension (φ=1) | 48 | | (C2xC6).110(C3:D4) | 288,266 |
(C2×C6).111(C3⋊D4) = C3×Q8⋊2Dic3 | central extension (φ=1) | 96 | | (C2xC6).111(C3:D4) | 288,269 |
(C2×C6).112(C3⋊D4) = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | (C2xC6).112(C3:D4) | 288,694 |
(C2×C6).113(C3⋊D4) = C6×D6⋊C4 | central extension (φ=1) | 96 | | (C2xC6).113(C3:D4) | 288,698 |
(C2×C6).114(C3⋊D4) = C6×D4⋊S3 | central extension (φ=1) | 48 | | (C2xC6).114(C3:D4) | 288,702 |
(C2×C6).115(C3⋊D4) = C6×D4.S3 | central extension (φ=1) | 48 | | (C2xC6).115(C3:D4) | 288,704 |
(C2×C6).116(C3⋊D4) = C6×Q8⋊2S3 | central extension (φ=1) | 96 | | (C2xC6).116(C3:D4) | 288,712 |
(C2×C6).117(C3⋊D4) = C6×C3⋊Q16 | central extension (φ=1) | 96 | | (C2xC6).117(C3:D4) | 288,714 |
(C2×C6).118(C3⋊D4) = C6×C6.D4 | central extension (φ=1) | 48 | | (C2xC6).118(C3:D4) | 288,723 |