extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C2×D4) = C36⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.1(C2xD4) | 288,79 |
C18.2(C2×D4) = C4×D36 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.2(C2xD4) | 288,83 |
C18.3(C2×D4) = C42⋊6D9 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.3(C2xD4) | 288,84 |
C18.4(C2×D4) = C42⋊7D9 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.4(C2xD4) | 288,85 |
C18.5(C2×D4) = C22⋊3D36 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 72 | | C18.5(C2xD4) | 288,92 |
C18.6(C2×D4) = C22.4D36 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.6(C2xD4) | 288,96 |
C18.7(C2×D4) = C4⋊D36 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.7(C2xD4) | 288,105 |
C18.8(C2×D4) = D18⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.8(C2xD4) | 288,107 |
C18.9(C2×D4) = C2×Dic36 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.9(C2xD4) | 288,109 |
C18.10(C2×D4) = C2×C72⋊C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.10(C2xD4) | 288,113 |
C18.11(C2×D4) = C2×D72 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | | C18.11(C2xD4) | 288,114 |
C18.12(C2×D4) = D72⋊7C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | 2 | C18.12(C2xD4) | 288,115 |
C18.13(C2×D4) = C8⋊D18 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 72 | 4+ | C18.13(C2xD4) | 288,118 |
C18.14(C2×D4) = C8.D18 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 144 | 4- | C18.14(C2xD4) | 288,119 |
C18.15(C2×D4) = C2×C4⋊Dic9 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C18 | 288 | | C18.15(C2xD4) | 288,135 |
C18.16(C2×D4) = C22⋊2Dic18 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.16(C2xD4) | 288,88 |
C18.17(C2×D4) = C22⋊C4×D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 72 | | C18.17(C2xD4) | 288,90 |
C18.18(C2×D4) = Dic9⋊4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.18(C2xD4) | 288,91 |
C18.19(C2×D4) = C23.9D18 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.19(C2xD4) | 288,93 |
C18.20(C2×D4) = D18⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.20(C2xD4) | 288,94 |
C18.21(C2×D4) = Dic9.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.21(C2xD4) | 288,95 |
C18.22(C2×D4) = C36⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 288 | | C18.22(C2xD4) | 288,98 |
C18.23(C2×D4) = C4⋊C4×D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.23(C2xD4) | 288,101 |
C18.24(C2×D4) = D36⋊C4 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.24(C2xD4) | 288,103 |
C18.25(C2×D4) = D18.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.25(C2xD4) | 288,104 |
C18.26(C2×D4) = D18⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.26(C2xD4) | 288,106 |
C18.27(C2×D4) = D8×D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 72 | 4+ | C18.27(C2xD4) | 288,120 |
C18.28(C2×D4) = D8⋊D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 72 | 4 | C18.28(C2xD4) | 288,121 |
C18.29(C2×D4) = D8⋊3D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | 4- | C18.29(C2xD4) | 288,122 |
C18.30(C2×D4) = SD16×D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 72 | 4 | C18.30(C2xD4) | 288,123 |
C18.31(C2×D4) = D72⋊C2 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 72 | 4+ | C18.31(C2xD4) | 288,124 |
C18.32(C2×D4) = SD16⋊D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | 4- | C18.32(C2xD4) | 288,125 |
C18.33(C2×D4) = SD16⋊3D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | 4 | C18.33(C2xD4) | 288,126 |
C18.34(C2×D4) = Q16×D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | 4- | C18.34(C2xD4) | 288,127 |
C18.35(C2×D4) = Q16⋊D9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | 4 | C18.35(C2xD4) | 288,128 |
C18.36(C2×D4) = D72⋊5C2 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | 4+ | C18.36(C2xD4) | 288,129 |
C18.37(C2×D4) = D4×Dic9 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.37(C2xD4) | 288,144 |
C18.38(C2×D4) = Dic9⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C18 | 144 | | C18.38(C2xD4) | 288,149 |
C18.39(C2×D4) = C2×Dic9⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 288 | | C18.39(C2xD4) | 288,133 |
C18.40(C2×D4) = C36.49D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.40(C2xD4) | 288,134 |
C18.41(C2×D4) = C2×D18⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.41(C2xD4) | 288,137 |
C18.42(C2×D4) = C4×C9⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.42(C2xD4) | 288,138 |
C18.43(C2×D4) = C23.28D18 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.43(C2xD4) | 288,139 |
C18.44(C2×D4) = C36⋊7D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.44(C2xD4) | 288,140 |
C18.45(C2×D4) = C2×D4.D9 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.45(C2xD4) | 288,141 |
C18.46(C2×D4) = C2×D4⋊D9 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.46(C2xD4) | 288,142 |
C18.47(C2×D4) = D36⋊6C22 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 72 | 4 | C18.47(C2xD4) | 288,143 |
C18.48(C2×D4) = C23.23D18 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.48(C2xD4) | 288,145 |
C18.49(C2×D4) = C36.17D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.49(C2xD4) | 288,146 |
C18.50(C2×D4) = C23⋊2D18 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 72 | | C18.50(C2xD4) | 288,147 |
C18.51(C2×D4) = C36⋊2D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.51(C2xD4) | 288,148 |
C18.52(C2×D4) = C36⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.52(C2xD4) | 288,150 |
C18.53(C2×D4) = C2×C9⋊Q16 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 288 | | C18.53(C2xD4) | 288,151 |
C18.54(C2×D4) = C2×Q8⋊2D9 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.54(C2xD4) | 288,152 |
C18.55(C2×D4) = C36.C23 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | 4 | C18.55(C2xD4) | 288,153 |
C18.56(C2×D4) = Dic9⋊Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 288 | | C18.56(C2xD4) | 288,154 |
C18.57(C2×D4) = D18⋊3Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.57(C2xD4) | 288,156 |
C18.58(C2×D4) = C36.23D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.58(C2xD4) | 288,157 |
C18.59(C2×D4) = D4.D18 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | 4- | C18.59(C2xD4) | 288,159 |
C18.60(C2×D4) = D4⋊D18 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 72 | 4+ | C18.60(C2xD4) | 288,160 |
C18.61(C2×D4) = D4.9D18 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | 4 | C18.61(C2xD4) | 288,161 |
C18.62(C2×D4) = C2×C18.D4 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 144 | | C18.62(C2xD4) | 288,162 |
C18.63(C2×D4) = C24⋊4D9 | φ: C2×D4/C23 → C2 ⊆ Aut C18 | 72 | | C18.63(C2xD4) | 288,163 |
C18.64(C2×D4) = C22⋊C4×C18 | central extension (φ=1) | 144 | | C18.64(C2xD4) | 288,165 |
C18.65(C2×D4) = C4⋊C4×C18 | central extension (φ=1) | 288 | | C18.65(C2xD4) | 288,166 |
C18.66(C2×D4) = D4×C36 | central extension (φ=1) | 144 | | C18.66(C2xD4) | 288,168 |
C18.67(C2×D4) = C9×C22≀C2 | central extension (φ=1) | 72 | | C18.67(C2xD4) | 288,170 |
C18.68(C2×D4) = C9×C4⋊D4 | central extension (φ=1) | 144 | | C18.68(C2xD4) | 288,171 |
C18.69(C2×D4) = C9×C22⋊Q8 | central extension (φ=1) | 144 | | C18.69(C2xD4) | 288,172 |
C18.70(C2×D4) = C9×C22.D4 | central extension (φ=1) | 144 | | C18.70(C2xD4) | 288,173 |
C18.71(C2×D4) = C9×C4.4D4 | central extension (φ=1) | 144 | | C18.71(C2xD4) | 288,174 |
C18.72(C2×D4) = C9×C4⋊1D4 | central extension (φ=1) | 144 | | C18.72(C2xD4) | 288,177 |
C18.73(C2×D4) = C9×C4⋊Q8 | central extension (φ=1) | 288 | | C18.73(C2xD4) | 288,178 |
C18.74(C2×D4) = D8×C18 | central extension (φ=1) | 144 | | C18.74(C2xD4) | 288,182 |
C18.75(C2×D4) = SD16×C18 | central extension (φ=1) | 144 | | C18.75(C2xD4) | 288,183 |
C18.76(C2×D4) = Q16×C18 | central extension (φ=1) | 288 | | C18.76(C2xD4) | 288,184 |
C18.77(C2×D4) = C9×C4○D8 | central extension (φ=1) | 144 | 2 | C18.77(C2xD4) | 288,185 |
C18.78(C2×D4) = C9×C8⋊C22 | central extension (φ=1) | 72 | 4 | C18.78(C2xD4) | 288,186 |
C18.79(C2×D4) = C9×C8.C22 | central extension (φ=1) | 144 | 4 | C18.79(C2xD4) | 288,187 |