extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C2xD4) = C36:2Q8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 288 | | C18.1(C2xD4) | 288,79 |
C18.2(C2xD4) = C4xD36 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.2(C2xD4) | 288,83 |
C18.3(C2xD4) = C42:6D9 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.3(C2xD4) | 288,84 |
C18.4(C2xD4) = C42:7D9 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.4(C2xD4) | 288,85 |
C18.5(C2xD4) = C22:3D36 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 72 | | C18.5(C2xD4) | 288,92 |
C18.6(C2xD4) = C22.4D36 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.6(C2xD4) | 288,96 |
C18.7(C2xD4) = C4:D36 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.7(C2xD4) | 288,105 |
C18.8(C2xD4) = D18:2Q8 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.8(C2xD4) | 288,107 |
C18.9(C2xD4) = C2xDic36 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 288 | | C18.9(C2xD4) | 288,109 |
C18.10(C2xD4) = C2xC72:C2 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.10(C2xD4) | 288,113 |
C18.11(C2xD4) = C2xD72 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | | C18.11(C2xD4) | 288,114 |
C18.12(C2xD4) = D72:7C2 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | 2 | C18.12(C2xD4) | 288,115 |
C18.13(C2xD4) = C8:D18 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 72 | 4+ | C18.13(C2xD4) | 288,118 |
C18.14(C2xD4) = C8.D18 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 144 | 4- | C18.14(C2xD4) | 288,119 |
C18.15(C2xD4) = C2xC4:Dic9 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C18 | 288 | | C18.15(C2xD4) | 288,135 |
C18.16(C2xD4) = C22:2Dic18 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.16(C2xD4) | 288,88 |
C18.17(C2xD4) = C22:C4xD9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 72 | | C18.17(C2xD4) | 288,90 |
C18.18(C2xD4) = Dic9:4D4 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.18(C2xD4) | 288,91 |
C18.19(C2xD4) = C23.9D18 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.19(C2xD4) | 288,93 |
C18.20(C2xD4) = D18:D4 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.20(C2xD4) | 288,94 |
C18.21(C2xD4) = Dic9.D4 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.21(C2xD4) | 288,95 |
C18.22(C2xD4) = C36:Q8 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 288 | | C18.22(C2xD4) | 288,98 |
C18.23(C2xD4) = C4:C4xD9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.23(C2xD4) | 288,101 |
C18.24(C2xD4) = D36:C4 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.24(C2xD4) | 288,103 |
C18.25(C2xD4) = D18.D4 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.25(C2xD4) | 288,104 |
C18.26(C2xD4) = D18:Q8 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.26(C2xD4) | 288,106 |
C18.27(C2xD4) = D8xD9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 72 | 4+ | C18.27(C2xD4) | 288,120 |
C18.28(C2xD4) = D8:D9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 72 | 4 | C18.28(C2xD4) | 288,121 |
C18.29(C2xD4) = D8:3D9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | 4- | C18.29(C2xD4) | 288,122 |
C18.30(C2xD4) = SD16xD9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 72 | 4 | C18.30(C2xD4) | 288,123 |
C18.31(C2xD4) = D72:C2 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 72 | 4+ | C18.31(C2xD4) | 288,124 |
C18.32(C2xD4) = SD16:D9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | 4- | C18.32(C2xD4) | 288,125 |
C18.33(C2xD4) = SD16:3D9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | 4 | C18.33(C2xD4) | 288,126 |
C18.34(C2xD4) = Q16xD9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | 4- | C18.34(C2xD4) | 288,127 |
C18.35(C2xD4) = Q16:D9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | 4 | C18.35(C2xD4) | 288,128 |
C18.36(C2xD4) = D72:5C2 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | 4+ | C18.36(C2xD4) | 288,129 |
C18.37(C2xD4) = D4xDic9 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.37(C2xD4) | 288,144 |
C18.38(C2xD4) = Dic9:D4 | φ: C2xD4/D4 → C2 ⊆ Aut C18 | 144 | | C18.38(C2xD4) | 288,149 |
C18.39(C2xD4) = C2xDic9:C4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 288 | | C18.39(C2xD4) | 288,133 |
C18.40(C2xD4) = C36.49D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.40(C2xD4) | 288,134 |
C18.41(C2xD4) = C2xD18:C4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.41(C2xD4) | 288,137 |
C18.42(C2xD4) = C4xC9:D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.42(C2xD4) | 288,138 |
C18.43(C2xD4) = C23.28D18 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.43(C2xD4) | 288,139 |
C18.44(C2xD4) = C36:7D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.44(C2xD4) | 288,140 |
C18.45(C2xD4) = C2xD4.D9 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.45(C2xD4) | 288,141 |
C18.46(C2xD4) = C2xD4:D9 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.46(C2xD4) | 288,142 |
C18.47(C2xD4) = D36:6C22 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 72 | 4 | C18.47(C2xD4) | 288,143 |
C18.48(C2xD4) = C23.23D18 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.48(C2xD4) | 288,145 |
C18.49(C2xD4) = C36.17D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.49(C2xD4) | 288,146 |
C18.50(C2xD4) = C23:2D18 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 72 | | C18.50(C2xD4) | 288,147 |
C18.51(C2xD4) = C36:2D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.51(C2xD4) | 288,148 |
C18.52(C2xD4) = C36:D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.52(C2xD4) | 288,150 |
C18.53(C2xD4) = C2xC9:Q16 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 288 | | C18.53(C2xD4) | 288,151 |
C18.54(C2xD4) = C2xQ8:2D9 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.54(C2xD4) | 288,152 |
C18.55(C2xD4) = C36.C23 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | 4 | C18.55(C2xD4) | 288,153 |
C18.56(C2xD4) = Dic9:Q8 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 288 | | C18.56(C2xD4) | 288,154 |
C18.57(C2xD4) = D18:3Q8 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.57(C2xD4) | 288,156 |
C18.58(C2xD4) = C36.23D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.58(C2xD4) | 288,157 |
C18.59(C2xD4) = D4.D18 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | 4- | C18.59(C2xD4) | 288,159 |
C18.60(C2xD4) = D4:D18 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 72 | 4+ | C18.60(C2xD4) | 288,160 |
C18.61(C2xD4) = D4.9D18 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | 4 | C18.61(C2xD4) | 288,161 |
C18.62(C2xD4) = C2xC18.D4 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 144 | | C18.62(C2xD4) | 288,162 |
C18.63(C2xD4) = C24:4D9 | φ: C2xD4/C23 → C2 ⊆ Aut C18 | 72 | | C18.63(C2xD4) | 288,163 |
C18.64(C2xD4) = C22:C4xC18 | central extension (φ=1) | 144 | | C18.64(C2xD4) | 288,165 |
C18.65(C2xD4) = C4:C4xC18 | central extension (φ=1) | 288 | | C18.65(C2xD4) | 288,166 |
C18.66(C2xD4) = D4xC36 | central extension (φ=1) | 144 | | C18.66(C2xD4) | 288,168 |
C18.67(C2xD4) = C9xC22wrC2 | central extension (φ=1) | 72 | | C18.67(C2xD4) | 288,170 |
C18.68(C2xD4) = C9xC4:D4 | central extension (φ=1) | 144 | | C18.68(C2xD4) | 288,171 |
C18.69(C2xD4) = C9xC22:Q8 | central extension (φ=1) | 144 | | C18.69(C2xD4) | 288,172 |
C18.70(C2xD4) = C9xC22.D4 | central extension (φ=1) | 144 | | C18.70(C2xD4) | 288,173 |
C18.71(C2xD4) = C9xC4.4D4 | central extension (φ=1) | 144 | | C18.71(C2xD4) | 288,174 |
C18.72(C2xD4) = C9xC4:1D4 | central extension (φ=1) | 144 | | C18.72(C2xD4) | 288,177 |
C18.73(C2xD4) = C9xC4:Q8 | central extension (φ=1) | 288 | | C18.73(C2xD4) | 288,178 |
C18.74(C2xD4) = D8xC18 | central extension (φ=1) | 144 | | C18.74(C2xD4) | 288,182 |
C18.75(C2xD4) = SD16xC18 | central extension (φ=1) | 144 | | C18.75(C2xD4) | 288,183 |
C18.76(C2xD4) = Q16xC18 | central extension (φ=1) | 288 | | C18.76(C2xD4) | 288,184 |
C18.77(C2xD4) = C9xC4oD8 | central extension (φ=1) | 144 | 2 | C18.77(C2xD4) | 288,185 |
C18.78(C2xD4) = C9xC8:C22 | central extension (φ=1) | 72 | 4 | C18.78(C2xD4) | 288,186 |
C18.79(C2xD4) = C9xC8.C22 | central extension (φ=1) | 144 | 4 | C18.79(C2xD4) | 288,187 |