extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×D12) = S3×C24⋊C2 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(C2xD12) | 288,440 |
C6.2(C2×D12) = S3×D24 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4+ | C6.2(C2xD12) | 288,441 |
C6.3(C2×D12) = C24⋊1D6 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4+ | C6.3(C2xD12) | 288,442 |
C6.4(C2×D12) = D24⋊S3 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(C2xD12) | 288,443 |
C6.5(C2×D12) = S3×Dic12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | 4- | C6.5(C2xD12) | 288,447 |
C6.6(C2×D12) = C24.3D6 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | 4- | C6.6(C2xD12) | 288,448 |
C6.7(C2×D12) = Dic12⋊S3 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(C2xD12) | 288,449 |
C6.8(C2×D12) = D6.1D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(C2xD12) | 288,454 |
C6.9(C2×D12) = D24⋊7S3 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | 4- | C6.9(C2xD12) | 288,455 |
C6.10(C2×D12) = D6.3D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | 4+ | C6.10(C2xD12) | 288,456 |
C6.11(C2×D12) = Dic3.D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.11(C2xD12) | 288,500 |
C6.12(C2×D12) = Dic3⋊4D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.12(C2xD12) | 288,528 |
C6.13(C2×D12) = Dic3⋊D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.13(C2xD12) | 288,534 |
C6.14(C2×D12) = S3×C4⋊Dic3 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.14(C2xD12) | 288,537 |
C6.15(C2×D12) = D6.D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.15(C2xD12) | 288,538 |
C6.16(C2×D12) = D6.9D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xD12) | 288,539 |
C6.17(C2×D12) = Dic3×D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.17(C2xD12) | 288,540 |
C6.18(C2×D12) = D6⋊2Dic6 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.18(C2xD12) | 288,541 |
C6.19(C2×D12) = Dic3⋊5D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.19(C2xD12) | 288,542 |
C6.20(C2×D12) = C62.65C23 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.20(C2xD12) | 288,543 |
C6.21(C2×D12) = D6⋊D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.21(C2xD12) | 288,554 |
C6.22(C2×D12) = D6⋊2D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.22(C2xD12) | 288,556 |
C6.23(C2×D12) = C12⋊7D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.23(C2xD12) | 288,557 |
C6.24(C2×D12) = Dic3⋊3D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.24(C2xD12) | 288,558 |
C6.25(C2×D12) = C12⋊D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.25(C2xD12) | 288,559 |
C6.26(C2×D12) = C12⋊3Dic6 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.26(C2xD12) | 288,566 |
C6.27(C2×D12) = S3×D6⋊C4 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.27(C2xD12) | 288,568 |
C6.28(C2×D12) = D6⋊4D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.28(C2xD12) | 288,570 |
C6.29(C2×D12) = D6⋊5D12 | φ: C2×D12/D12 → C2 ⊆ Aut C6 | 48 | | C6.29(C2xD12) | 288,571 |
C6.30(C2×D12) = C36⋊2Q8 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.30(C2xD12) | 288,79 |
C6.31(C2×D12) = C4×D36 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.31(C2xD12) | 288,83 |
C6.32(C2×D12) = C42⋊6D9 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.32(C2xD12) | 288,84 |
C6.33(C2×D12) = C42⋊7D9 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.33(C2xD12) | 288,85 |
C6.34(C2×D12) = C22⋊3D36 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.34(C2xD12) | 288,92 |
C6.35(C2×D12) = C22.4D36 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.35(C2xD12) | 288,96 |
C6.36(C2×D12) = C4⋊D36 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.36(C2xD12) | 288,105 |
C6.37(C2×D12) = D18⋊2Q8 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.37(C2xD12) | 288,107 |
C6.38(C2×D12) = C2×Dic36 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.38(C2xD12) | 288,109 |
C6.39(C2×D12) = C2×C72⋊C2 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.39(C2xD12) | 288,113 |
C6.40(C2×D12) = C2×D72 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.40(C2xD12) | 288,114 |
C6.41(C2×D12) = D72⋊7C2 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.41(C2xD12) | 288,115 |
C6.42(C2×D12) = C8⋊D18 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 72 | 4+ | C6.42(C2xD12) | 288,118 |
C6.43(C2×D12) = C8.D18 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | 4- | C6.43(C2xD12) | 288,119 |
C6.44(C2×D12) = C2×C4⋊Dic9 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.44(C2xD12) | 288,135 |
C6.45(C2×D12) = C2×D18⋊C4 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.45(C2xD12) | 288,137 |
C6.46(C2×D12) = C36⋊7D4 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.46(C2xD12) | 288,140 |
C6.47(C2×D12) = C22×D36 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.47(C2xD12) | 288,354 |
C6.48(C2×D12) = C12⋊6Dic6 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.48(C2xD12) | 288,726 |
C6.49(C2×D12) = C4×C12⋊S3 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.49(C2xD12) | 288,730 |
C6.50(C2×D12) = C12⋊4D12 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.50(C2xD12) | 288,731 |
C6.51(C2×D12) = C122⋊6C2 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.51(C2xD12) | 288,732 |
C6.52(C2×D12) = C62⋊12D4 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.52(C2xD12) | 288,739 |
C6.53(C2×D12) = C62.69D4 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.53(C2xD12) | 288,743 |
C6.54(C2×D12) = C12⋊3D12 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.54(C2xD12) | 288,752 |
C6.55(C2×D12) = C12.31D12 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.55(C2xD12) | 288,754 |
C6.56(C2×D12) = C2×C24⋊2S3 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.56(C2xD12) | 288,759 |
C6.57(C2×D12) = C2×C32⋊5D8 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.57(C2xD12) | 288,760 |
C6.58(C2×D12) = C24.78D6 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.58(C2xD12) | 288,761 |
C6.59(C2×D12) = C2×C32⋊5Q16 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.59(C2xD12) | 288,762 |
C6.60(C2×D12) = C24⋊3D6 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.60(C2xD12) | 288,765 |
C6.61(C2×D12) = C24.5D6 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.61(C2xD12) | 288,766 |
C6.62(C2×D12) = C2×C12⋊Dic3 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.62(C2xD12) | 288,782 |
C6.63(C2×D12) = C2×C6.11D12 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.63(C2xD12) | 288,784 |
C6.64(C2×D12) = C62⋊19D4 | φ: C2×D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.64(C2xD12) | 288,787 |
C6.65(C2×D12) = C2×C3⋊D24 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.65(C2xD12) | 288,472 |
C6.66(C2×D12) = D12⋊18D6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 24 | 4+ | C6.66(C2xD12) | 288,473 |
C6.67(C2×D12) = C2×D12.S3 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.67(C2xD12) | 288,476 |
C6.68(C2×D12) = D12.27D6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.68(C2xD12) | 288,477 |
C6.69(C2×D12) = D12.28D6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.69(C2xD12) | 288,478 |
C6.70(C2×D12) = D12.29D6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | 4- | C6.70(C2xD12) | 288,479 |
C6.71(C2×D12) = C2×C32⋊5SD16 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.71(C2xD12) | 288,480 |
C6.72(C2×D12) = Dic6.29D6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.72(C2xD12) | 288,481 |
C6.73(C2×D12) = C2×C32⋊3Q16 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.73(C2xD12) | 288,483 |
C6.74(C2×D12) = D6⋊7Dic6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.74(C2xD12) | 288,505 |
C6.75(C2×D12) = C12.27D12 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.75(C2xD12) | 288,508 |
C6.76(C2×D12) = C12.28D12 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.76(C2xD12) | 288,512 |
C6.77(C2×D12) = Dic3⋊Dic6 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.77(C2xD12) | 288,514 |
C6.78(C2×D12) = C12.30D12 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.78(C2xD12) | 288,519 |
C6.79(C2×D12) = C4×C3⋊D12 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.79(C2xD12) | 288,551 |
C6.80(C2×D12) = C12⋊2D12 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.80(C2xD12) | 288,564 |
C6.81(C2×D12) = C2×D6⋊Dic3 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.81(C2xD12) | 288,608 |
C6.82(C2×D12) = C62.57D4 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.82(C2xD12) | 288,610 |
C6.83(C2×D12) = C2×C6.D12 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.83(C2xD12) | 288,611 |
C6.84(C2×D12) = C2×Dic3⋊Dic3 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.84(C2xD12) | 288,613 |
C6.85(C2×D12) = C62.60D4 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.85(C2xD12) | 288,614 |
C6.86(C2×D12) = C62⋊5D4 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.86(C2xD12) | 288,625 |
C6.87(C2×D12) = C62⋊6D4 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 48 | | C6.87(C2xD12) | 288,626 |
C6.88(C2×D12) = C62⋊8D4 | φ: C2×D12/C22×S3 → C2 ⊆ Aut C6 | 24 | | C6.88(C2xD12) | 288,629 |
C6.89(C2×D12) = C3×C12⋊2Q8 | central extension (φ=1) | 96 | | C6.89(C2xD12) | 288,640 |
C6.90(C2×D12) = C12×D12 | central extension (φ=1) | 96 | | C6.90(C2xD12) | 288,644 |
C6.91(C2×D12) = C3×C4⋊D12 | central extension (φ=1) | 96 | | C6.91(C2xD12) | 288,645 |
C6.92(C2×D12) = C3×C42⋊7S3 | central extension (φ=1) | 96 | | C6.92(C2xD12) | 288,646 |
C6.93(C2×D12) = C3×D6⋊D4 | central extension (φ=1) | 48 | | C6.93(C2xD12) | 288,653 |
C6.94(C2×D12) = C3×C23.21D6 | central extension (φ=1) | 48 | | C6.94(C2xD12) | 288,657 |
C6.95(C2×D12) = C3×C12⋊D4 | central extension (φ=1) | 96 | | C6.95(C2xD12) | 288,666 |
C6.96(C2×D12) = C3×C4.D12 | central extension (φ=1) | 96 | | C6.96(C2xD12) | 288,668 |
C6.97(C2×D12) = C6×C24⋊C2 | central extension (φ=1) | 96 | | C6.97(C2xD12) | 288,673 |
C6.98(C2×D12) = C6×D24 | central extension (φ=1) | 96 | | C6.98(C2xD12) | 288,674 |
C6.99(C2×D12) = C3×C4○D24 | central extension (φ=1) | 48 | 2 | C6.99(C2xD12) | 288,675 |
C6.100(C2×D12) = C6×Dic12 | central extension (φ=1) | 96 | | C6.100(C2xD12) | 288,676 |
C6.101(C2×D12) = C3×C8⋊D6 | central extension (φ=1) | 48 | 4 | C6.101(C2xD12) | 288,679 |
C6.102(C2×D12) = C3×C8.D6 | central extension (φ=1) | 48 | 4 | C6.102(C2xD12) | 288,680 |
C6.103(C2×D12) = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | C6.103(C2xD12) | 288,696 |
C6.104(C2×D12) = C6×D6⋊C4 | central extension (φ=1) | 96 | | C6.104(C2xD12) | 288,698 |
C6.105(C2×D12) = C3×C12⋊7D4 | central extension (φ=1) | 48 | | C6.105(C2xD12) | 288,701 |