# Extensions 1→N→G→Q→1 with N=Q8×C32 and Q=C22

Direct product G=N×Q with N=Q8×C32 and Q=C22
dρLabelID
Q8×C62288Q8xC6^2288,1020

Semidirect products G=N:Q with N=Q8×C32 and Q=C22
extensionφ:Q→Out NdρLabelID
(Q8×C32)⋊1C22 = S3×Q82S3φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2):1C2^2288,586
(Q8×C32)⋊2C22 = D126D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2):2C2^2288,587
(Q8×C32)⋊3C22 = D12.9D6φ: C22/C1C22 ⊆ Out Q8×C32488-(Q8xC3^2):3C2^2288,588
(Q8×C32)⋊4C22 = D12.10D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2):4C2^2288,589
(Q8×C32)⋊5C22 = C3×S3×SD16φ: C22/C1C22 ⊆ Out Q8×C32484(Q8xC3^2):5C2^2288,684
(Q8×C32)⋊6C22 = C3×Q83D6φ: C22/C1C22 ⊆ Out Q8×C32484(Q8xC3^2):6C2^2288,685
(Q8×C32)⋊7C22 = SD16×C3⋊S3φ: C22/C1C22 ⊆ Out Q8×C3272(Q8xC3^2):7C2^2288,770
(Q8×C32)⋊8C22 = C247D6φ: C22/C1C22 ⊆ Out Q8×C3272(Q8xC3^2):8C2^2288,771
(Q8×C32)⋊9C22 = S32×Q8φ: C22/C1C22 ⊆ Out Q8×C32488-(Q8xC3^2):9C2^2288,965
(Q8×C32)⋊10C22 = S3×Q83S3φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2):10C2^2288,966
(Q8×C32)⋊11C22 = D1215D6φ: C22/C1C22 ⊆ Out Q8×C32488-(Q8xC3^2):11C2^2288,967
(Q8×C32)⋊12C22 = D1216D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2):12C2^2288,968
(Q8×C32)⋊13C22 = C6×Q82S3φ: C22/C2C2 ⊆ Out Q8×C3296(Q8xC3^2):13C2^2288,712
(Q8×C32)⋊14C22 = C3×D4⋊D6φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2):14C2^2288,720
(Q8×C32)⋊15C22 = C2×C3211SD16φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2):15C2^2288,798
(Q8×C32)⋊16C22 = C62.73D4φ: C22/C2C2 ⊆ Out Q8×C3272(Q8xC3^2):16C2^2288,806
(Q8×C32)⋊17C22 = S3×C6×Q8φ: C22/C2C2 ⊆ Out Q8×C3296(Q8xC3^2):17C2^2288,995
(Q8×C32)⋊18C22 = C6×Q83S3φ: C22/C2C2 ⊆ Out Q8×C3296(Q8xC3^2):18C2^2288,996
(Q8×C32)⋊19C22 = C3×S3×C4○D4φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2):19C2^2288,998
(Q8×C32)⋊20C22 = C3×D4○D12φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2):20C2^2288,999
(Q8×C32)⋊21C22 = C2×Q8×C3⋊S3φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2):21C2^2288,1010
(Q8×C32)⋊22C22 = C2×C12.26D6φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2):22C2^2288,1011
(Q8×C32)⋊23C22 = C4○D4×C3⋊S3φ: C22/C2C2 ⊆ Out Q8×C3272(Q8xC3^2):23C2^2288,1013
(Q8×C32)⋊24C22 = C62.154C23φ: C22/C2C2 ⊆ Out Q8×C3272(Q8xC3^2):24C2^2288,1014
(Q8×C32)⋊25C22 = SD16×C3×C6φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2):25C2^2288,830
(Q8×C32)⋊26C22 = C32×C8⋊C22φ: C22/C2C2 ⊆ Out Q8×C3272(Q8xC3^2):26C2^2288,833
(Q8×C32)⋊27C22 = C4○D4×C3×C6φ: trivial image144(Q8xC3^2):27C2^2288,1021
(Q8×C32)⋊28C22 = C32×2+ 1+4φ: trivial image72(Q8xC3^2):28C2^2288,1022

Non-split extensions G=N.Q with N=Q8×C32 and Q=C22
extensionφ:Q→Out NdρLabelID
(Q8×C32).1C22 = S3×C3⋊Q16φ: C22/C1C22 ⊆ Out Q8×C32968-(Q8xC3^2).1C2^2288,590
(Q8×C32).2C22 = D12.11D6φ: C22/C1C22 ⊆ Out Q8×C32968-(Q8xC3^2).2C2^2288,591
(Q8×C32).3C22 = Dic6.9D6φ: C22/C1C22 ⊆ Out Q8×C32488-(Q8xC3^2).3C2^2288,592
(Q8×C32).4C22 = Dic6.10D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2).4C2^2288,593
(Q8×C32).5C22 = D12.24D6φ: C22/C1C22 ⊆ Out Q8×C32968-(Q8xC3^2).5C2^2288,594
(Q8×C32).6C22 = D12.12D6φ: C22/C1C22 ⊆ Out Q8×C32968-(Q8xC3^2).6C2^2288,595
(Q8×C32).7C22 = Dic6.22D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2).7C2^2288,596
(Q8×C32).8C22 = D12.13D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2).8C2^2288,597
(Q8×C32).9C22 = D12.14D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2).9C2^2288,598
(Q8×C32).10C22 = D12.15D6φ: C22/C1C22 ⊆ Out Q8×C32488-(Q8xC3^2).10C2^2288,599
(Q8×C32).11C22 = C3×D4.D6φ: C22/C1C22 ⊆ Out Q8×C32484(Q8xC3^2).11C2^2288,686
(Q8×C32).12C22 = C3×Q8.7D6φ: C22/C1C22 ⊆ Out Q8×C32484(Q8xC3^2).12C2^2288,687
(Q8×C32).13C22 = C3×S3×Q16φ: C22/C1C22 ⊆ Out Q8×C32964(Q8xC3^2).13C2^2288,688
(Q8×C32).14C22 = C3×Q16⋊S3φ: C22/C1C22 ⊆ Out Q8×C32964(Q8xC3^2).14C2^2288,689
(Q8×C32).15C22 = C3×D24⋊C2φ: C22/C1C22 ⊆ Out Q8×C32964(Q8xC3^2).15C2^2288,690
(Q8×C32).16C22 = C24.32D6φ: C22/C1C22 ⊆ Out Q8×C32144(Q8xC3^2).16C2^2288,772
(Q8×C32).17C22 = C24.40D6φ: C22/C1C22 ⊆ Out Q8×C32144(Q8xC3^2).17C2^2288,773
(Q8×C32).18C22 = Q16×C3⋊S3φ: C22/C1C22 ⊆ Out Q8×C32144(Q8xC3^2).18C2^2288,774
(Q8×C32).19C22 = C24.35D6φ: C22/C1C22 ⊆ Out Q8×C32144(Q8xC3^2).19C2^2288,775
(Q8×C32).20C22 = C24.28D6φ: C22/C1C22 ⊆ Out Q8×C32144(Q8xC3^2).20C2^2288,776
(Q8×C32).21C22 = D12.25D6φ: C22/C1C22 ⊆ Out Q8×C32488-(Q8xC3^2).21C2^2288,963
(Q8×C32).22C22 = Dic6.26D6φ: C22/C1C22 ⊆ Out Q8×C32488+(Q8xC3^2).22C2^2288,964
(Q8×C32).23C22 = C3×Q8.11D6φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2).23C2^2288,713
(Q8×C32).24C22 = C6×C3⋊Q16φ: C22/C2C2 ⊆ Out Q8×C3296(Q8xC3^2).24C2^2288,714
(Q8×C32).25C22 = C3×Q8.13D6φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2).25C2^2288,721
(Q8×C32).26C22 = C3×Q8.14D6φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2).26C2^2288,722
(Q8×C32).27C22 = C62.134D4φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).27C2^2288,799
(Q8×C32).28C22 = C2×C327Q16φ: C22/C2C2 ⊆ Out Q8×C32288(Q8xC3^2).28C2^2288,800
(Q8×C32).29C22 = C62.74D4φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).29C2^2288,807
(Q8×C32).30C22 = C62.75D4φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).30C2^2288,808
(Q8×C32).31C22 = C3×Q8.15D6φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2).31C2^2288,997
(Q8×C32).32C22 = C3×Q8○D12φ: C22/C2C2 ⊆ Out Q8×C32484(Q8xC3^2).32C2^2288,1000
(Q8×C32).33C22 = C3272- 1+4φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).33C2^2288,1012
(Q8×C32).34C22 = C3292- 1+4φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).34C2^2288,1015
(Q8×C32).35C22 = Q16×C3×C6φ: C22/C2C2 ⊆ Out Q8×C32288(Q8xC3^2).35C2^2288,831
(Q8×C32).36C22 = C32×C4○D8φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).36C2^2288,832
(Q8×C32).37C22 = C32×C8.C22φ: C22/C2C2 ⊆ Out Q8×C32144(Q8xC3^2).37C2^2288,834
(Q8×C32).38C22 = C32×2- 1+4φ: trivial image144(Q8xC3^2).38C2^2288,1023

׿
×
𝔽