Copied to
clipboard

?

G = (C2×D4).9F5order 320 = 26·5

6th non-split extension by C2×D4 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×D4).9F5, (D4×C10).6C4, C23.F53C2, Dic5.5(C2×D4), C23.15(C2×F5), Dic5.D43C2, (C2×Dic5).120D4, C22.3(C22⋊F5), C22.13(C22×F5), C22.F5.3C22, (C22×Dic5).11C4, Dic5.45(C22⋊C4), (C2×Dic5).173C23, (C2×Dic10).145C22, C52(M4(2).8C22), (C22×Dic5).189C22, (C2×C4×D5).5C4, (C2×C4).5(C2×F5), (C2×C5⋊D4).9C4, (C2×C20).25(C2×C4), (C2×C22.F5)⋊7C2, C2.22(C2×C22⋊F5), (C2×D42D5).8C2, C10.21(C2×C22⋊C4), (C22×D5).8(C2×C4), (C2×C10).3(C22⋊C4), (C2×C10).80(C22×C4), (C22×C10).28(C2×C4), (C2×C5⋊D4).89C22, (C2×Dic5).193(C2×C4), SmallGroup(320,1115)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×D4).9F5
C1C5C10Dic5C2×Dic5C22.F5C2×C22.F5 — (C2×D4).9F5
C5C10C2×C10 — (C2×D4).9F5

Subgroups: 586 in 150 conjugacy classes, 48 normal (28 characteristic)
C1, C2, C2 [×5], C4 [×6], C22, C22 [×2], C22 [×5], C5, C8 [×4], C2×C4, C2×C4 [×11], D4 [×6], Q8 [×2], C23 [×2], C23, D5, C10, C10 [×4], C2×C8 [×2], M4(2) [×6], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C4○D4 [×4], Dic5 [×2], Dic5 [×2], Dic5, C20, D10 [×2], C2×C10, C2×C10 [×2], C2×C10 [×3], C4.D4 [×2], C4.10D4 [×2], C2×M4(2) [×2], C2×C4○D4, C5⋊C8 [×4], Dic10 [×2], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×2], C5⋊D4 [×4], C2×C20, C5×D4 [×2], C22×D5, C22×C10 [×2], M4(2).8C22, C2×C5⋊C8 [×2], C22.F5 [×4], C22.F5 [×2], C2×Dic10, C2×C4×D5, D42D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, Dic5.D4 [×2], C23.F5 [×2], C2×C22.F5 [×2], C2×D42D5, (C2×D4).9F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×2], F5, C2×C22⋊C4, C2×F5 [×3], M4(2).8C22, C22⋊F5 [×2], C22×F5, C2×C22⋊F5, (C2×D4).9F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=b2, ebe-1=ab=ba, ac=ca, ad=da, eae-1=ab2, cbc=b-1, bd=db, cd=dc, ece-1=b2c, ede-1=d3 >

Smallest permutation representation
On 80 points
Generators in S80
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(57 61)(59 63)(65 69)(67 71)(73 77)(75 79)
(1 67 5 71)(2 72 6 68)(3 65 7 69)(4 70 8 66)(9 57 13 61)(10 62 14 58)(11 63 15 59)(12 60 16 64)(17 27 21 31)(18 32 22 28)(19 25 23 29)(20 30 24 26)(33 49 37 53)(34 54 38 50)(35 55 39 51)(36 52 40 56)(41 79 45 75)(42 76 46 80)(43 77 47 73)(44 74 48 78)
(1 65)(2 70)(3 67)(4 72)(5 69)(6 66)(7 71)(8 68)(9 39)(10 36)(11 33)(12 38)(13 35)(14 40)(15 37)(16 34)(17 45)(18 42)(19 47)(20 44)(21 41)(22 46)(23 43)(24 48)(25 77)(26 74)(27 79)(28 76)(29 73)(30 78)(31 75)(32 80)(49 59)(50 64)(51 61)(52 58)(53 63)(54 60)(55 57)(56 62)
(1 33 75 19 57)(2 20 34 58 76)(3 59 21 77 35)(4 78 60 36 22)(5 37 79 23 61)(6 24 38 62 80)(7 63 17 73 39)(8 74 64 40 18)(9 71 53 45 29)(10 46 72 30 54)(11 31 47 55 65)(12 56 32 66 48)(13 67 49 41 25)(14 42 68 26 50)(15 27 43 51 69)(16 52 28 70 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(73,77)(75,79), (1,67,5,71)(2,72,6,68)(3,65,7,69)(4,70,8,66)(9,57,13,61)(10,62,14,58)(11,63,15,59)(12,60,16,64)(17,27,21,31)(18,32,22,28)(19,25,23,29)(20,30,24,26)(33,49,37,53)(34,54,38,50)(35,55,39,51)(36,52,40,56)(41,79,45,75)(42,76,46,80)(43,77,47,73)(44,74,48,78), (1,65)(2,70)(3,67)(4,72)(5,69)(6,66)(7,71)(8,68)(9,39)(10,36)(11,33)(12,38)(13,35)(14,40)(15,37)(16,34)(17,45)(18,42)(19,47)(20,44)(21,41)(22,46)(23,43)(24,48)(25,77)(26,74)(27,79)(28,76)(29,73)(30,78)(31,75)(32,80)(49,59)(50,64)(51,61)(52,58)(53,63)(54,60)(55,57)(56,62), (1,33,75,19,57)(2,20,34,58,76)(3,59,21,77,35)(4,78,60,36,22)(5,37,79,23,61)(6,24,38,62,80)(7,63,17,73,39)(8,74,64,40,18)(9,71,53,45,29)(10,46,72,30,54)(11,31,47,55,65)(12,56,32,66,48)(13,67,49,41,25)(14,42,68,26,50)(15,27,43,51,69)(16,52,28,70,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(73,77)(75,79), (1,67,5,71)(2,72,6,68)(3,65,7,69)(4,70,8,66)(9,57,13,61)(10,62,14,58)(11,63,15,59)(12,60,16,64)(17,27,21,31)(18,32,22,28)(19,25,23,29)(20,30,24,26)(33,49,37,53)(34,54,38,50)(35,55,39,51)(36,52,40,56)(41,79,45,75)(42,76,46,80)(43,77,47,73)(44,74,48,78), (1,65)(2,70)(3,67)(4,72)(5,69)(6,66)(7,71)(8,68)(9,39)(10,36)(11,33)(12,38)(13,35)(14,40)(15,37)(16,34)(17,45)(18,42)(19,47)(20,44)(21,41)(22,46)(23,43)(24,48)(25,77)(26,74)(27,79)(28,76)(29,73)(30,78)(31,75)(32,80)(49,59)(50,64)(51,61)(52,58)(53,63)(54,60)(55,57)(56,62), (1,33,75,19,57)(2,20,34,58,76)(3,59,21,77,35)(4,78,60,36,22)(5,37,79,23,61)(6,24,38,62,80)(7,63,17,73,39)(8,74,64,40,18)(9,71,53,45,29)(10,46,72,30,54)(11,31,47,55,65)(12,56,32,66,48)(13,67,49,41,25)(14,42,68,26,50)(15,27,43,51,69)(16,52,28,70,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(57,61),(59,63),(65,69),(67,71),(73,77),(75,79)], [(1,67,5,71),(2,72,6,68),(3,65,7,69),(4,70,8,66),(9,57,13,61),(10,62,14,58),(11,63,15,59),(12,60,16,64),(17,27,21,31),(18,32,22,28),(19,25,23,29),(20,30,24,26),(33,49,37,53),(34,54,38,50),(35,55,39,51),(36,52,40,56),(41,79,45,75),(42,76,46,80),(43,77,47,73),(44,74,48,78)], [(1,65),(2,70),(3,67),(4,72),(5,69),(6,66),(7,71),(8,68),(9,39),(10,36),(11,33),(12,38),(13,35),(14,40),(15,37),(16,34),(17,45),(18,42),(19,47),(20,44),(21,41),(22,46),(23,43),(24,48),(25,77),(26,74),(27,79),(28,76),(29,73),(30,78),(31,75),(32,80),(49,59),(50,64),(51,61),(52,58),(53,63),(54,60),(55,57),(56,62)], [(1,33,75,19,57),(2,20,34,58,76),(3,59,21,77,35),(4,78,60,36,22),(5,37,79,23,61),(6,24,38,62,80),(7,63,17,73,39),(8,74,64,40,18),(9,71,53,45,29),(10,46,72,30,54),(11,31,47,55,65),(12,56,32,66,48),(13,67,49,41,25),(14,42,68,26,50),(15,27,43,51,69),(16,52,28,70,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
00100000
00010000
000040000
000004000
00004010
00007001
,
400000000
040000000
004000000
000400000
000032000
000028900
000000320
000022009
,
10000000
01000000
00100000
00010000
000026500
0000291500
00001931032
00009390
,
4040000000
87000000
393934400000
00100000
00001000
00000100
00000010
00000001
,
01536360000
33183550000
3232800000
02915150000
0000330370
000000291
000013180
0000180140

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,4,7,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,32,28,0,22,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,26,29,19,9,0,0,0,0,5,15,31,3,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0],[40,8,39,0,0,0,0,0,40,7,39,0,0,0,0,0,0,0,34,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,33,32,0,0,0,0,0,15,18,32,29,0,0,0,0,36,35,8,15,0,0,0,0,36,5,0,15,0,0,0,0,0,0,0,0,33,0,13,18,0,0,0,0,0,0,1,0,0,0,0,0,37,29,8,14,0,0,0,0,0,1,0,0] >;

32 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G 5 8A···8H10A10B10C10D10E10F10G20A20B
order1222222444444458···8101010101010102020
size1122242045510101020420···20444888888

32 irreducible representations

dim1111111112444448
type++++++++++-
imageC1C2C2C2C2C4C4C4C4D4F5C2×F5C2×F5M4(2).8C22C22⋊F5(C2×D4).9F5
kernel(C2×D4).9F5Dic5.D4C23.F5C2×C22.F5C2×D42D5C2×C4×D5C22×Dic5C2×C5⋊D4D4×C10C2×Dic5C2×D4C2×C4C23C5C22C1
# reps1222122224112242

In GAP, Magma, Sage, TeX

(C_2\times D_4)._9F_5
% in TeX

G:=Group("(C2xD4).9F5");
// GroupNames label

G:=SmallGroup(320,1115);
// by ID

G=gap.SmallGroup(320,1115);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,297,136,1684,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=b^2,e*b*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽