Copied to
clipboard

?

G = (C2×D4).8F5order 320 = 26·5

5th non-split extension by C2×D4 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×D4).8F5, (C4×D5).37D4, (D4×C10).10C4, C23.14(C2×F5), C10.18(C8○D4), C2.18(D4.F5), C4.14(C22⋊F5), C20.14(C22⋊C4), Dic5.110(C2×D4), (C2×Dic10).13C4, C23.2F512C2, D10.13(C22⋊C4), C22.94(C22×F5), (C2×Dic5).355C23, (C22×Dic5).188C22, (C2×D5⋊C8)⋊2C2, (C2×C4.F5)⋊2C2, (C2×C5⋊D4).8C4, (C2×C4).82(C2×F5), (C2×C20).56(C2×C4), (C2×C5⋊C8).12C22, C2.21(C2×C22⋊F5), C52((C22×C8)⋊C2), C10.20(C2×C22⋊C4), (C2×C4×D5).201C22, (C2×D42D5).16C2, (C2×C10).79(C22×C4), (C22×C10).27(C2×C4), (C2×Dic5).74(C2×C4), (C22×D5).56(C2×C4), SmallGroup(320,1114)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×D4).8F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×D5⋊C8 — (C2×D4).8F5
C5C2×C10 — (C2×D4).8F5

Subgroups: 586 in 158 conjugacy classes, 52 normal (20 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×4], C22, C22 [×10], C5, C8 [×4], C2×C4, C2×C4 [×11], D4 [×6], Q8 [×2], C23 [×2], C23, D5 [×2], C10, C10 [×2], C10 [×2], C2×C8 [×6], M4(2) [×2], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C4○D4 [×4], Dic5 [×2], Dic5 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C2×C10 [×6], C22⋊C8 [×4], C22×C8, C2×M4(2), C2×C4○D4, C5⋊C8 [×4], Dic10 [×2], C4×D5 [×4], C2×Dic5, C2×Dic5 [×2], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20, C5×D4 [×2], C22×D5, C22×C10 [×2], (C22×C8)⋊C2, D5⋊C8 [×2], C4.F5 [×2], C2×C5⋊C8 [×4], C2×Dic10, C2×C4×D5, D42D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, C23.2F5 [×4], C2×D5⋊C8, C2×C4.F5, C2×D42D5, (C2×D4).8F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×2], F5, C2×C22⋊C4, C8○D4 [×2], C2×F5 [×3], (C22×C8)⋊C2, C22⋊F5 [×2], C22×F5, D4.F5 [×2], C2×C22⋊F5, (C2×D4).8F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=ab2c, ede-1=d3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 141)(2 142)(3 143)(4 144)(5 137)(6 138)(7 139)(8 140)(9 130)(10 131)(11 132)(12 133)(13 134)(14 135)(15 136)(16 129)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 147)(26 148)(27 149)(28 150)(29 151)(30 152)(31 145)(32 146)(41 99)(42 100)(43 101)(44 102)(45 103)(46 104)(47 97)(48 98)(49 110)(50 111)(51 112)(52 105)(53 106)(54 107)(55 108)(56 109)(57 121)(58 122)(59 123)(60 124)(61 125)(62 126)(63 127)(64 128)(65 87)(66 88)(67 81)(68 82)(69 83)(70 84)(71 85)(72 86)(73 96)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(113 155)(114 156)(115 157)(116 158)(117 159)(118 160)(119 153)(120 154)
(1 143 5 139)(2 144 6 140)(3 137 7 141)(4 138 8 142)(9 63 13 59)(10 64 14 60)(11 57 15 61)(12 58 16 62)(17 37 21 33)(18 38 22 34)(19 39 23 35)(20 40 24 36)(25 42 29 46)(26 43 30 47)(27 44 31 48)(28 45 32 41)(49 84 53 88)(50 85 54 81)(51 86 55 82)(52 87 56 83)(65 109 69 105)(66 110 70 106)(67 111 71 107)(68 112 72 108)(73 117 77 113)(74 118 78 114)(75 119 79 115)(76 120 80 116)(89 160 93 156)(90 153 94 157)(91 154 95 158)(92 155 96 159)(97 148 101 152)(98 149 102 145)(99 150 103 146)(100 151 104 147)(121 136 125 132)(122 129 126 133)(123 130 127 134)(124 131 128 135)
(1 34)(2 17)(3 36)(4 19)(5 38)(6 21)(7 40)(8 23)(9 147)(10 30)(11 149)(12 32)(13 151)(14 26)(15 145)(16 28)(18 139)(20 141)(22 143)(24 137)(25 130)(27 132)(29 134)(31 136)(33 144)(35 138)(37 140)(39 142)(41 62)(42 123)(43 64)(44 125)(45 58)(46 127)(47 60)(48 121)(49 78)(50 90)(51 80)(52 92)(53 74)(54 94)(55 76)(56 96)(57 98)(59 100)(61 102)(63 104)(65 117)(66 156)(67 119)(68 158)(69 113)(70 160)(71 115)(72 154)(73 109)(75 111)(77 105)(79 107)(81 153)(82 116)(83 155)(84 118)(85 157)(86 120)(87 159)(88 114)(89 106)(91 108)(93 110)(95 112)(97 124)(99 126)(101 128)(103 122)(129 150)(131 152)(133 146)(135 148)
(1 94 132 63 113)(2 64 95 114 133)(3 115 57 134 96)(4 135 116 89 58)(5 90 136 59 117)(6 60 91 118 129)(7 119 61 130 92)(8 131 120 93 62)(9 77 139 153 125)(10 154 78 126 140)(11 127 155 141 79)(12 142 128 80 156)(13 73 143 157 121)(14 158 74 122 144)(15 123 159 137 75)(16 138 124 76 160)(17 43 112 88 146)(18 81 44 147 105)(19 148 82 106 45)(20 107 149 46 83)(21 47 108 84 150)(22 85 48 151 109)(23 152 86 110 41)(24 111 145 42 87)(25 52 40 67 102)(26 68 53 103 33)(27 104 69 34 54)(28 35 97 55 70)(29 56 36 71 98)(30 72 49 99 37)(31 100 65 38 50)(32 39 101 51 66)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,141)(2,142)(3,143)(4,144)(5,137)(6,138)(7,139)(8,140)(9,130)(10,131)(11,132)(12,133)(13,134)(14,135)(15,136)(16,129)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,110)(50,111)(51,112)(52,105)(53,106)(54,107)(55,108)(56,109)(57,121)(58,122)(59,123)(60,124)(61,125)(62,126)(63,127)(64,128)(65,87)(66,88)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,96)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154), (1,143,5,139)(2,144,6,140)(3,137,7,141)(4,138,8,142)(9,63,13,59)(10,64,14,60)(11,57,15,61)(12,58,16,62)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,42,29,46)(26,43,30,47)(27,44,31,48)(28,45,32,41)(49,84,53,88)(50,85,54,81)(51,86,55,82)(52,87,56,83)(65,109,69,105)(66,110,70,106)(67,111,71,107)(68,112,72,108)(73,117,77,113)(74,118,78,114)(75,119,79,115)(76,120,80,116)(89,160,93,156)(90,153,94,157)(91,154,95,158)(92,155,96,159)(97,148,101,152)(98,149,102,145)(99,150,103,146)(100,151,104,147)(121,136,125,132)(122,129,126,133)(123,130,127,134)(124,131,128,135), (1,34)(2,17)(3,36)(4,19)(5,38)(6,21)(7,40)(8,23)(9,147)(10,30)(11,149)(12,32)(13,151)(14,26)(15,145)(16,28)(18,139)(20,141)(22,143)(24,137)(25,130)(27,132)(29,134)(31,136)(33,144)(35,138)(37,140)(39,142)(41,62)(42,123)(43,64)(44,125)(45,58)(46,127)(47,60)(48,121)(49,78)(50,90)(51,80)(52,92)(53,74)(54,94)(55,76)(56,96)(57,98)(59,100)(61,102)(63,104)(65,117)(66,156)(67,119)(68,158)(69,113)(70,160)(71,115)(72,154)(73,109)(75,111)(77,105)(79,107)(81,153)(82,116)(83,155)(84,118)(85,157)(86,120)(87,159)(88,114)(89,106)(91,108)(93,110)(95,112)(97,124)(99,126)(101,128)(103,122)(129,150)(131,152)(133,146)(135,148), (1,94,132,63,113)(2,64,95,114,133)(3,115,57,134,96)(4,135,116,89,58)(5,90,136,59,117)(6,60,91,118,129)(7,119,61,130,92)(8,131,120,93,62)(9,77,139,153,125)(10,154,78,126,140)(11,127,155,141,79)(12,142,128,80,156)(13,73,143,157,121)(14,158,74,122,144)(15,123,159,137,75)(16,138,124,76,160)(17,43,112,88,146)(18,81,44,147,105)(19,148,82,106,45)(20,107,149,46,83)(21,47,108,84,150)(22,85,48,151,109)(23,152,86,110,41)(24,111,145,42,87)(25,52,40,67,102)(26,68,53,103,33)(27,104,69,34,54)(28,35,97,55,70)(29,56,36,71,98)(30,72,49,99,37)(31,100,65,38,50)(32,39,101,51,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,141)(2,142)(3,143)(4,144)(5,137)(6,138)(7,139)(8,140)(9,130)(10,131)(11,132)(12,133)(13,134)(14,135)(15,136)(16,129)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,110)(50,111)(51,112)(52,105)(53,106)(54,107)(55,108)(56,109)(57,121)(58,122)(59,123)(60,124)(61,125)(62,126)(63,127)(64,128)(65,87)(66,88)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,96)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154), (1,143,5,139)(2,144,6,140)(3,137,7,141)(4,138,8,142)(9,63,13,59)(10,64,14,60)(11,57,15,61)(12,58,16,62)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,42,29,46)(26,43,30,47)(27,44,31,48)(28,45,32,41)(49,84,53,88)(50,85,54,81)(51,86,55,82)(52,87,56,83)(65,109,69,105)(66,110,70,106)(67,111,71,107)(68,112,72,108)(73,117,77,113)(74,118,78,114)(75,119,79,115)(76,120,80,116)(89,160,93,156)(90,153,94,157)(91,154,95,158)(92,155,96,159)(97,148,101,152)(98,149,102,145)(99,150,103,146)(100,151,104,147)(121,136,125,132)(122,129,126,133)(123,130,127,134)(124,131,128,135), (1,34)(2,17)(3,36)(4,19)(5,38)(6,21)(7,40)(8,23)(9,147)(10,30)(11,149)(12,32)(13,151)(14,26)(15,145)(16,28)(18,139)(20,141)(22,143)(24,137)(25,130)(27,132)(29,134)(31,136)(33,144)(35,138)(37,140)(39,142)(41,62)(42,123)(43,64)(44,125)(45,58)(46,127)(47,60)(48,121)(49,78)(50,90)(51,80)(52,92)(53,74)(54,94)(55,76)(56,96)(57,98)(59,100)(61,102)(63,104)(65,117)(66,156)(67,119)(68,158)(69,113)(70,160)(71,115)(72,154)(73,109)(75,111)(77,105)(79,107)(81,153)(82,116)(83,155)(84,118)(85,157)(86,120)(87,159)(88,114)(89,106)(91,108)(93,110)(95,112)(97,124)(99,126)(101,128)(103,122)(129,150)(131,152)(133,146)(135,148), (1,94,132,63,113)(2,64,95,114,133)(3,115,57,134,96)(4,135,116,89,58)(5,90,136,59,117)(6,60,91,118,129)(7,119,61,130,92)(8,131,120,93,62)(9,77,139,153,125)(10,154,78,126,140)(11,127,155,141,79)(12,142,128,80,156)(13,73,143,157,121)(14,158,74,122,144)(15,123,159,137,75)(16,138,124,76,160)(17,43,112,88,146)(18,81,44,147,105)(19,148,82,106,45)(20,107,149,46,83)(21,47,108,84,150)(22,85,48,151,109)(23,152,86,110,41)(24,111,145,42,87)(25,52,40,67,102)(26,68,53,103,33)(27,104,69,34,54)(28,35,97,55,70)(29,56,36,71,98)(30,72,49,99,37)(31,100,65,38,50)(32,39,101,51,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,141),(2,142),(3,143),(4,144),(5,137),(6,138),(7,139),(8,140),(9,130),(10,131),(11,132),(12,133),(13,134),(14,135),(15,136),(16,129),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,147),(26,148),(27,149),(28,150),(29,151),(30,152),(31,145),(32,146),(41,99),(42,100),(43,101),(44,102),(45,103),(46,104),(47,97),(48,98),(49,110),(50,111),(51,112),(52,105),(53,106),(54,107),(55,108),(56,109),(57,121),(58,122),(59,123),(60,124),(61,125),(62,126),(63,127),(64,128),(65,87),(66,88),(67,81),(68,82),(69,83),(70,84),(71,85),(72,86),(73,96),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(113,155),(114,156),(115,157),(116,158),(117,159),(118,160),(119,153),(120,154)], [(1,143,5,139),(2,144,6,140),(3,137,7,141),(4,138,8,142),(9,63,13,59),(10,64,14,60),(11,57,15,61),(12,58,16,62),(17,37,21,33),(18,38,22,34),(19,39,23,35),(20,40,24,36),(25,42,29,46),(26,43,30,47),(27,44,31,48),(28,45,32,41),(49,84,53,88),(50,85,54,81),(51,86,55,82),(52,87,56,83),(65,109,69,105),(66,110,70,106),(67,111,71,107),(68,112,72,108),(73,117,77,113),(74,118,78,114),(75,119,79,115),(76,120,80,116),(89,160,93,156),(90,153,94,157),(91,154,95,158),(92,155,96,159),(97,148,101,152),(98,149,102,145),(99,150,103,146),(100,151,104,147),(121,136,125,132),(122,129,126,133),(123,130,127,134),(124,131,128,135)], [(1,34),(2,17),(3,36),(4,19),(5,38),(6,21),(7,40),(8,23),(9,147),(10,30),(11,149),(12,32),(13,151),(14,26),(15,145),(16,28),(18,139),(20,141),(22,143),(24,137),(25,130),(27,132),(29,134),(31,136),(33,144),(35,138),(37,140),(39,142),(41,62),(42,123),(43,64),(44,125),(45,58),(46,127),(47,60),(48,121),(49,78),(50,90),(51,80),(52,92),(53,74),(54,94),(55,76),(56,96),(57,98),(59,100),(61,102),(63,104),(65,117),(66,156),(67,119),(68,158),(69,113),(70,160),(71,115),(72,154),(73,109),(75,111),(77,105),(79,107),(81,153),(82,116),(83,155),(84,118),(85,157),(86,120),(87,159),(88,114),(89,106),(91,108),(93,110),(95,112),(97,124),(99,126),(101,128),(103,122),(129,150),(131,152),(133,146),(135,148)], [(1,94,132,63,113),(2,64,95,114,133),(3,115,57,134,96),(4,135,116,89,58),(5,90,136,59,117),(6,60,91,118,129),(7,119,61,130,92),(8,131,120,93,62),(9,77,139,153,125),(10,154,78,126,140),(11,127,155,141,79),(12,142,128,80,156),(13,73,143,157,121),(14,158,74,122,144),(15,123,159,137,75),(16,138,124,76,160),(17,43,112,88,146),(18,81,44,147,105),(19,148,82,106,45),(20,107,149,46,83),(21,47,108,84,150),(22,85,48,151,109),(23,152,86,110,41),(24,111,145,42,87),(25,52,40,67,102),(26,68,53,103,33),(27,104,69,34,54),(28,35,97,55,70),(29,56,36,71,98),(30,72,49,99,37),(31,100,65,38,50),(32,39,101,51,66)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
3200000
090000
001000
000100
000010
000001
,
090000
3200000
00223803
00019383
00338190
00303822
,
100000
010000
0000040
0010040
0001040
0000140
,
3800000
0380000
001328200
003328013
001302833
000202813

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,22,0,3,3,0,0,38,19,38,0,0,0,0,38,19,38,0,0,3,3,0,22],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[38,0,0,0,0,0,0,38,0,0,0,0,0,0,13,33,13,0,0,0,28,28,0,20,0,0,20,0,28,28,0,0,0,13,33,13] >;

38 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H 5 8A···8H8I8J8K8L10A10B10C10D10E10F10G20A20B
order122222224444444458···88888101010101010102020
size11114410102255552020410···1020202020444888888

38 irreducible representations

dim111111112244448
type++++++++++-
imageC1C2C2C2C2C4C4C4D4C8○D4F5C2×F5C2×F5C22⋊F5D4.F5
kernel(C2×D4).8F5C23.2F5C2×D5⋊C8C2×C4.F5C2×D42D5C2×Dic10C2×C5⋊D4D4×C10C4×D5C10C2×D4C2×C4C23C4C2
# reps141112424811242

In GAP, Magma, Sage, TeX

(C_2\times D_4)._8F_5
% in TeX

G:=Group("(C2xD4).8F5");
// GroupNames label

G:=SmallGroup(320,1114);
// by ID

G=gap.SmallGroup(320,1114);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a*b^2*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽