Copied to
clipboard

?

G = (C2×Q8)⋊6F5order 320 = 26·5

4th semidirect product of C2×Q8 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×Q8)⋊6F5, (Q8×C10)⋊6C4, Q8.8(C2×F5), (C2×D20)⋊12C4, Q82F55C2, Q82D57C4, D20.8(C2×C4), D10.8(C2×D4), (C4×D5).43D4, (C4×F5)⋊2C22, C4.F54C22, D5⋊M4(2)⋊4C2, C4.20(C22×F5), C20.20(C22×C4), (C22×D5).70D4, (C4×D5).42C23, C4.19(C22⋊F5), C20.19(C22⋊C4), Dic5.112(C2×D4), (C2×Dic5).262D4, C52(C42⋊C22), D10.15(C22⋊C4), Q82D5.12C22, C22.29(C22⋊F5), D10.C234C2, Dic5.47(C22⋊C4), (C2×C4).40(C2×F5), (C5×Q8).8(C2×C4), (C2×C20).62(C2×C4), (C4×D5).26(C2×C4), C2.29(C2×C22⋊F5), C10.28(C2×C22⋊C4), (C2×C4×D5).207C22, (C2×Q82D5).10C2, (C2×C10).60(C22⋊C4), SmallGroup(320,1122)

Series: Derived Chief Lower central Upper central

C1C20 — (C2×Q8)⋊6F5
C1C5C10Dic5C4×D5C4.F5D5⋊M4(2) — (C2×Q8)⋊6F5
C5C10C20 — (C2×Q8)⋊6F5

Subgroups: 698 in 154 conjugacy classes, 48 normal (30 characteristic)
C1, C2, C2 [×5], C4 [×2], C4 [×6], C22, C22 [×7], C5, C8 [×2], C2×C4, C2×C4 [×12], D4 [×7], Q8 [×2], Q8, C23 [×2], D5 [×4], C10, C10, C42 [×2], C22⋊C4, C4⋊C4, C2×C8, M4(2) [×3], C22×C4 [×2], C2×D4 [×2], C2×Q8, C4○D4 [×6], Dic5 [×2], C20 [×2], C20 [×2], F5 [×2], D10 [×2], D10 [×5], C2×C10, C4≀C2 [×4], C42⋊C2, C2×M4(2), C2×C4○D4, C5⋊C8 [×2], C4×D5 [×4], C4×D5 [×4], D20 [×2], D20 [×5], C2×Dic5, C2×C20, C2×C20, C5×Q8 [×2], C5×Q8, C2×F5 [×2], C22×D5, C22×D5, C42⋊C22, D5⋊C8, C4.F5 [×2], C4×F5 [×2], C4⋊F5, C22.F5, C22⋊F5, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q82D5 [×4], Q82D5 [×2], Q8×C10, Q82F5 [×4], D5⋊M4(2), D10.C23, C2×Q82D5, (C2×Q8)⋊6F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×2], F5, C2×C22⋊C4, C2×F5 [×3], C42⋊C22, C22⋊F5 [×2], C22×F5, C2×C22⋊F5, (C2×Q8)⋊6F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, eae-1=ab2, cbc-1=b-1, bd=db, ebe-1=b-1c, cd=dc, ce=ec, ede-1=d3 >

Smallest permutation representation
On 80 points
Generators in S80
(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)
(1 21 6 26)(2 22 7 27)(3 23 8 28)(4 24 9 29)(5 25 10 30)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)(41 76 46 71)(42 77 47 72)(43 78 48 73)(44 79 49 74)(45 80 50 75)(51 61 56 66)(52 62 57 67)(53 63 58 68)(54 64 59 69)(55 65 60 70)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 51 46 56)(42 52 47 57)(43 53 48 58)(44 54 49 59)(45 55 50 60)(61 76 66 71)(62 77 67 72)(63 78 68 73)(64 79 69 74)(65 80 70 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 63)(2 65 5 61)(3 62 4 64)(6 68)(7 70 10 66)(8 67 9 69)(11 73)(12 75 15 71)(13 72 14 74)(16 78)(17 80 20 76)(18 77 19 79)(21 43 26 48)(22 45 30 46)(23 42 29 49)(24 44 28 47)(25 41 27 50)(31 53 36 58)(32 55 40 56)(33 52 39 59)(34 54 38 57)(35 51 37 60)

G:=sub<Sym(80)| (41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,21,6,26)(2,22,7,27)(3,23,8,28)(4,24,9,29)(5,25,10,30)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40)(41,76,46,71)(42,77,47,72)(43,78,48,73)(44,79,49,74)(45,80,50,75)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,63)(2,65,5,61)(3,62,4,64)(6,68)(7,70,10,66)(8,67,9,69)(11,73)(12,75,15,71)(13,72,14,74)(16,78)(17,80,20,76)(18,77,19,79)(21,43,26,48)(22,45,30,46)(23,42,29,49)(24,44,28,47)(25,41,27,50)(31,53,36,58)(32,55,40,56)(33,52,39,59)(34,54,38,57)(35,51,37,60)>;

G:=Group( (41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,21,6,26)(2,22,7,27)(3,23,8,28)(4,24,9,29)(5,25,10,30)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40)(41,76,46,71)(42,77,47,72)(43,78,48,73)(44,79,49,74)(45,80,50,75)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,63)(2,65,5,61)(3,62,4,64)(6,68)(7,70,10,66)(8,67,9,69)(11,73)(12,75,15,71)(13,72,14,74)(16,78)(17,80,20,76)(18,77,19,79)(21,43,26,48)(22,45,30,46)(23,42,29,49)(24,44,28,47)(25,41,27,50)(31,53,36,58)(32,55,40,56)(33,52,39,59)(34,54,38,57)(35,51,37,60) );

G=PermutationGroup([(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80)], [(1,21,6,26),(2,22,7,27),(3,23,8,28),(4,24,9,29),(5,25,10,30),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40),(41,76,46,71),(42,77,47,72),(43,78,48,73),(44,79,49,74),(45,80,50,75),(51,61,56,66),(52,62,57,67),(53,63,58,68),(54,64,59,69),(55,65,60,70)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,51,46,56),(42,52,47,57),(43,53,48,58),(44,54,49,59),(45,55,50,60),(61,76,66,71),(62,77,67,72),(63,78,68,73),(64,79,69,74),(65,80,70,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,63),(2,65,5,61),(3,62,4,64),(6,68),(7,70,10,66),(8,67,9,69),(11,73),(12,75,15,71),(13,72,14,74),(16,78),(17,80,20,76),(18,77,19,79),(21,43,26,48),(22,45,30,46),(23,42,29,49),(24,44,28,47),(25,41,27,50),(31,53,36,58),(32,55,40,56),(33,52,39,59),(34,54,38,57),(35,51,37,60)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
00100000
00010000
00001000
00000100
000000400
000000040
,
19038380000
322300000
032230000
38380190000
000004000
00001000
00000009
00000090
,
400000000
040000000
004000000
000400000
00009000
000003200
000000320
00000009
,
404040400000
10000000
01000000
00100000
00001000
00000100
00000010
00000001
,
32018180000
18180320000
23142300000
9272790000
00000001
000000400
00000100
00001000

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[19,3,0,38,0,0,0,0,0,22,3,38,0,0,0,0,38,3,22,0,0,0,0,0,38,0,3,19,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9],[40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[32,18,23,9,0,0,0,0,0,18,14,27,0,0,0,0,18,0,23,27,0,0,0,0,18,32,0,9,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0] >;

32 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K 5 8A8B8C8D10A10B10C20A···20F
order1222222444444444445888810101020···20
size1121010202022445510202020204202020204448···8

32 irreducible representations

dim111111112224444448
type++++++++++++++
imageC1C2C2C2C2C4C4C4D4D4D4F5C2×F5C2×F5C42⋊C22C22⋊F5C22⋊F5(C2×Q8)⋊6F5
kernel(C2×Q8)⋊6F5Q82F5D5⋊M4(2)D10.C23C2×Q82D5C2×D20Q82D5Q8×C10C4×D5C2×Dic5C22×D5C2×Q8C2×C4Q8C5C4C22C1
# reps141112422111122222

In GAP, Magma, Sage, TeX

(C_2\times Q_8)\rtimes_6F_5
% in TeX

G:=Group("(C2xQ8):6F5");
// GroupNames label

G:=SmallGroup(320,1122);
// by ID

G=gap.SmallGroup(320,1122);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,184,136,1684,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,e*b*e^-1=b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽