Copied to
clipboard

?

G = C10.102+ (1+4)order 320 = 26·5

10th non-split extension by C10 of 2+ (1+4) acting via 2+ (1+4)/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.102+ (1+4), C5⋊D44Q8, C20⋊Q810C2, C51(D43Q8), C4⋊C4.264D10, D10⋊Q82C2, D102Q89C2, C22.8(Q8×D5), D10.19(C2×Q8), Dic53Q89C2, C4.92(C4○D20), (C2×C10).55C24, Dic5.20(C2×Q8), C20.194(C4○D4), C20.48D418C2, C10.26(C22×Q8), (C2×C20).138C23, Dic5.Q81C2, (C22×C4).180D10, C2.13(D46D10), C22.89(C23×D5), C4⋊Dic5.192C22, C23.227(C22×D5), C23.D5.88C22, D10⋊C4.94C22, (C22×C20).103C22, (C22×C10).404C23, (C2×Dic5).201C23, (C4×Dic5).212C22, (C22×D5).170C23, (C2×Dic10).147C22, C10.D4.149C22, C2.9(C2×Q8×D5), (D5×C4⋊C4)⋊10C2, (C2×C4⋊C4)⋊20D5, (C10×C4⋊C4)⋊17C2, (C4×C5⋊D4).3C2, C10.22(C2×C4○D4), C2.24(C2×C4○D20), (C2×C10).95(C2×Q8), (C2×C4×D5).242C22, (C5×C4⋊C4).297C22, (C2×C4).573(C22×D5), (C2×C5⋊D4).159C22, SmallGroup(320,1183)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.102+ (1+4)
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C10.102+ (1+4)
C5C2×C10 — C10.102+ (1+4)

Subgroups: 726 in 228 conjugacy classes, 107 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×13], C22, C22 [×2], C22 [×6], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×15], D4 [×4], Q8 [×4], C23, C23, D5 [×2], C10 [×3], C10 [×2], C42 [×3], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×12], C22×C4, C22×C4 [×2], C22×C4 [×3], C2×D4, C2×Q8 [×3], Dic5 [×2], Dic5 [×6], C20 [×2], C20 [×5], D10 [×2], D10 [×2], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C2×C4⋊C4, C4×D4 [×3], C4×Q8, C22⋊Q8 [×6], C42.C2 [×2], C4⋊Q8, Dic10 [×4], C4×D5 [×4], C2×Dic5 [×3], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×4], C22×D5, C22×C10, D43Q8, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×8], C4⋊Dic5, C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×2], C23.D5, C23.D5 [×2], C5×C4⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10, C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×2], C2×C5⋊D4, C22×C20, C22×C20 [×2], Dic53Q8, C20⋊Q8, Dic5.Q8 [×2], D5×C4⋊C4, D10⋊Q8 [×2], D102Q8, C20.48D4, C20.48D4 [×2], C4×C5⋊D4, C4×C5⋊D4 [×2], C10×C4⋊C4, C10.102+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22×Q8, C2×C4○D4, 2+ (1+4), C22×D5 [×7], D43Q8, C4○D20 [×2], Q8×D5 [×2], C23×D5, C2×C4○D20, D46D10, C2×Q8×D5, C10.102+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc=a5b-1, dbd-1=a5b, be=eb, cd=dc, ce=ec, ede-1=b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 11 30 155)(2 20 21 154)(3 19 22 153)(4 18 23 152)(5 17 24 151)(6 16 25 160)(7 15 26 159)(8 14 27 158)(9 13 28 157)(10 12 29 156)(31 139 41 149)(32 138 42 148)(33 137 43 147)(34 136 44 146)(35 135 45 145)(36 134 46 144)(37 133 47 143)(38 132 48 142)(39 131 49 141)(40 140 50 150)(51 129 61 119)(52 128 62 118)(53 127 63 117)(54 126 64 116)(55 125 65 115)(56 124 66 114)(57 123 67 113)(58 122 68 112)(59 121 69 111)(60 130 70 120)(71 94 81 104)(72 93 82 103)(73 92 83 102)(74 91 84 101)(75 100 85 110)(76 99 86 109)(77 98 87 108)(78 97 88 107)(79 96 89 106)(80 95 90 105)
(1 40)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 141)(18 142)(19 143)(20 144)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 130 30 120)(2 121 21 111)(3 122 22 112)(4 123 23 113)(5 124 24 114)(6 125 25 115)(7 126 26 116)(8 127 27 117)(9 128 28 118)(10 129 29 119)(11 65 155 55)(12 66 156 56)(13 67 157 57)(14 68 158 58)(15 69 159 59)(16 70 160 60)(17 61 151 51)(18 62 152 52)(19 63 153 53)(20 64 154 54)(31 101 41 91)(32 102 42 92)(33 103 43 93)(34 104 44 94)(35 105 45 95)(36 106 46 96)(37 107 47 97)(38 108 48 98)(39 109 49 99)(40 110 50 100)(71 141 81 131)(72 142 82 132)(73 143 83 133)(74 144 84 134)(75 145 85 135)(76 146 86 136)(77 147 87 137)(78 148 88 138)(79 149 89 139)(80 150 90 140)
(1 145 6 150)(2 146 7 141)(3 147 8 142)(4 148 9 143)(5 149 10 144)(11 35 16 40)(12 36 17 31)(13 37 18 32)(14 38 19 33)(15 39 20 34)(21 136 26 131)(22 137 27 132)(23 138 28 133)(24 139 29 134)(25 140 30 135)(41 156 46 151)(42 157 47 152)(43 158 48 153)(44 159 49 154)(45 160 50 155)(51 101 56 106)(52 102 57 107)(53 103 58 108)(54 104 59 109)(55 105 60 110)(61 91 66 96)(62 92 67 97)(63 93 68 98)(64 94 69 99)(65 95 70 100)(71 121 76 126)(72 122 77 127)(73 123 78 128)(74 124 79 129)(75 125 80 130)(81 111 86 116)(82 112 87 117)(83 113 88 118)(84 114 89 119)(85 115 90 120)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,11,30,155)(2,20,21,154)(3,19,22,153)(4,18,23,152)(5,17,24,151)(6,16,25,160)(7,15,26,159)(8,14,27,158)(9,13,28,157)(10,12,29,156)(31,139,41,149)(32,138,42,148)(33,137,43,147)(34,136,44,146)(35,135,45,145)(36,134,46,144)(37,133,47,143)(38,132,48,142)(39,131,49,141)(40,140,50,150)(51,129,61,119)(52,128,62,118)(53,127,63,117)(54,126,64,116)(55,125,65,115)(56,124,66,114)(57,123,67,113)(58,122,68,112)(59,121,69,111)(60,130,70,120)(71,94,81,104)(72,93,82,103)(73,92,83,102)(74,91,84,101)(75,100,85,110)(76,99,86,109)(77,98,87,108)(78,97,88,107)(79,96,89,106)(80,95,90,105), (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,130,30,120)(2,121,21,111)(3,122,22,112)(4,123,23,113)(5,124,24,114)(6,125,25,115)(7,126,26,116)(8,127,27,117)(9,128,28,118)(10,129,29,119)(11,65,155,55)(12,66,156,56)(13,67,157,57)(14,68,158,58)(15,69,159,59)(16,70,160,60)(17,61,151,51)(18,62,152,52)(19,63,153,53)(20,64,154,54)(31,101,41,91)(32,102,42,92)(33,103,43,93)(34,104,44,94)(35,105,45,95)(36,106,46,96)(37,107,47,97)(38,108,48,98)(39,109,49,99)(40,110,50,100)(71,141,81,131)(72,142,82,132)(73,143,83,133)(74,144,84,134)(75,145,85,135)(76,146,86,136)(77,147,87,137)(78,148,88,138)(79,149,89,139)(80,150,90,140), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,35,16,40)(12,36,17,31)(13,37,18,32)(14,38,19,33)(15,39,20,34)(21,136,26,131)(22,137,27,132)(23,138,28,133)(24,139,29,134)(25,140,30,135)(41,156,46,151)(42,157,47,152)(43,158,48,153)(44,159,49,154)(45,160,50,155)(51,101,56,106)(52,102,57,107)(53,103,58,108)(54,104,59,109)(55,105,60,110)(61,91,66,96)(62,92,67,97)(63,93,68,98)(64,94,69,99)(65,95,70,100)(71,121,76,126)(72,122,77,127)(73,123,78,128)(74,124,79,129)(75,125,80,130)(81,111,86,116)(82,112,87,117)(83,113,88,118)(84,114,89,119)(85,115,90,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,11,30,155)(2,20,21,154)(3,19,22,153)(4,18,23,152)(5,17,24,151)(6,16,25,160)(7,15,26,159)(8,14,27,158)(9,13,28,157)(10,12,29,156)(31,139,41,149)(32,138,42,148)(33,137,43,147)(34,136,44,146)(35,135,45,145)(36,134,46,144)(37,133,47,143)(38,132,48,142)(39,131,49,141)(40,140,50,150)(51,129,61,119)(52,128,62,118)(53,127,63,117)(54,126,64,116)(55,125,65,115)(56,124,66,114)(57,123,67,113)(58,122,68,112)(59,121,69,111)(60,130,70,120)(71,94,81,104)(72,93,82,103)(73,92,83,102)(74,91,84,101)(75,100,85,110)(76,99,86,109)(77,98,87,108)(78,97,88,107)(79,96,89,106)(80,95,90,105), (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,130,30,120)(2,121,21,111)(3,122,22,112)(4,123,23,113)(5,124,24,114)(6,125,25,115)(7,126,26,116)(8,127,27,117)(9,128,28,118)(10,129,29,119)(11,65,155,55)(12,66,156,56)(13,67,157,57)(14,68,158,58)(15,69,159,59)(16,70,160,60)(17,61,151,51)(18,62,152,52)(19,63,153,53)(20,64,154,54)(31,101,41,91)(32,102,42,92)(33,103,43,93)(34,104,44,94)(35,105,45,95)(36,106,46,96)(37,107,47,97)(38,108,48,98)(39,109,49,99)(40,110,50,100)(71,141,81,131)(72,142,82,132)(73,143,83,133)(74,144,84,134)(75,145,85,135)(76,146,86,136)(77,147,87,137)(78,148,88,138)(79,149,89,139)(80,150,90,140), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,35,16,40)(12,36,17,31)(13,37,18,32)(14,38,19,33)(15,39,20,34)(21,136,26,131)(22,137,27,132)(23,138,28,133)(24,139,29,134)(25,140,30,135)(41,156,46,151)(42,157,47,152)(43,158,48,153)(44,159,49,154)(45,160,50,155)(51,101,56,106)(52,102,57,107)(53,103,58,108)(54,104,59,109)(55,105,60,110)(61,91,66,96)(62,92,67,97)(63,93,68,98)(64,94,69,99)(65,95,70,100)(71,121,76,126)(72,122,77,127)(73,123,78,128)(74,124,79,129)(75,125,80,130)(81,111,86,116)(82,112,87,117)(83,113,88,118)(84,114,89,119)(85,115,90,120) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,11,30,155),(2,20,21,154),(3,19,22,153),(4,18,23,152),(5,17,24,151),(6,16,25,160),(7,15,26,159),(8,14,27,158),(9,13,28,157),(10,12,29,156),(31,139,41,149),(32,138,42,148),(33,137,43,147),(34,136,44,146),(35,135,45,145),(36,134,46,144),(37,133,47,143),(38,132,48,142),(39,131,49,141),(40,140,50,150),(51,129,61,119),(52,128,62,118),(53,127,63,117),(54,126,64,116),(55,125,65,115),(56,124,66,114),(57,123,67,113),(58,122,68,112),(59,121,69,111),(60,130,70,120),(71,94,81,104),(72,93,82,103),(73,92,83,102),(74,91,84,101),(75,100,85,110),(76,99,86,109),(77,98,87,108),(78,97,88,107),(79,96,89,106),(80,95,90,105)], [(1,40),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,141),(18,142),(19,143),(20,144),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,130,30,120),(2,121,21,111),(3,122,22,112),(4,123,23,113),(5,124,24,114),(6,125,25,115),(7,126,26,116),(8,127,27,117),(9,128,28,118),(10,129,29,119),(11,65,155,55),(12,66,156,56),(13,67,157,57),(14,68,158,58),(15,69,159,59),(16,70,160,60),(17,61,151,51),(18,62,152,52),(19,63,153,53),(20,64,154,54),(31,101,41,91),(32,102,42,92),(33,103,43,93),(34,104,44,94),(35,105,45,95),(36,106,46,96),(37,107,47,97),(38,108,48,98),(39,109,49,99),(40,110,50,100),(71,141,81,131),(72,142,82,132),(73,143,83,133),(74,144,84,134),(75,145,85,135),(76,146,86,136),(77,147,87,137),(78,148,88,138),(79,149,89,139),(80,150,90,140)], [(1,145,6,150),(2,146,7,141),(3,147,8,142),(4,148,9,143),(5,149,10,144),(11,35,16,40),(12,36,17,31),(13,37,18,32),(14,38,19,33),(15,39,20,34),(21,136,26,131),(22,137,27,132),(23,138,28,133),(24,139,29,134),(25,140,30,135),(41,156,46,151),(42,157,47,152),(43,158,48,153),(44,159,49,154),(45,160,50,155),(51,101,56,106),(52,102,57,107),(53,103,58,108),(54,104,59,109),(55,105,60,110),(61,91,66,96),(62,92,67,97),(63,93,68,98),(64,94,69,99),(65,95,70,100),(71,121,76,126),(72,122,77,127),(73,123,78,128),(74,124,79,129),(75,125,80,130),(81,111,86,116),(82,112,87,117),(83,113,88,118),(84,114,89,119),(85,115,90,120)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
00403500
0063500
0000400
0000040
,
910000
2320000
0035600
001600
0000321
00002138
,
4090000
010000
001000
000100
0000400
0000040
,
1320000
0400000
001000
000100
00002138
00003820
,
900000
090000
0040000
0004000
00003820
0000203

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,2,0,0,0,0,1,32,0,0,0,0,0,0,35,1,0,0,0,0,6,6,0,0,0,0,0,0,3,21,0,0,0,0,21,38],[40,0,0,0,0,0,9,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,32,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,21,38,0,0,0,0,38,20],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,38,20,0,0,0,0,20,3] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L···4Q5A5B10A···10N20A···20X
order122222224···4444444···45510···1020···20
size11112210102···2444101020···20222···24···4

65 irreducible representations

dim1111111111222222444
type++++++++++-++++-
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10C4○D202+ (1+4)Q8×D5D46D10
kernelC10.102+ (1+4)Dic53Q8C20⋊Q8Dic5.Q8D5×C4⋊C4D10⋊Q8D102Q8C20.48D4C4×C5⋊D4C10×C4⋊C4C5⋊D4C2×C4⋊C4C20C4⋊C4C22×C4C4C10C22C2
# reps11121213314248616144

In GAP, Magma, Sage, TeX

C_{10}._{10}2_+^{(1+4)}
% in TeX

G:=Group("C10.10ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1183);
// by ID

G=gap.SmallGroup(320,1183);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,1571,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽