Copied to
clipboard

?

G = C2×C40.C4order 320 = 26·5

Direct product of C2 and C40.C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C40.C4, (C8×D5).5C4, (C2×C8).15F5, C8.28(C2×F5), C40.29(C2×C4), (C2×C40).15C4, (C4×D5).84D4, C4.14(C4⋊F5), C20.21(C4⋊C4), (C4×D5).26Q8, D10.12(C2×Q8), C101(C8.C4), D10.30(C4⋊C4), C4.38(C22×F5), C4.F5.7C22, C20.78(C22×C4), Dic5.31(C2×D4), (C4×D5).78C23, (C8×D5).57C22, C22.24(C4⋊F5), (C22×D5).18Q8, Dic5.31(C4⋊C4), (C2×Dic5).175D4, C51(C2×C8.C4), (D5×C2×C8).25C2, C2.17(C2×C4⋊F5), C10.14(C2×C4⋊C4), (C2×C52C8).24C4, (C2×C4.F5).9C2, C52C8.48(C2×C4), (C4×D5).87(C2×C4), (C2×C4).139(C2×F5), (C2×C10).22(C4⋊C4), (C2×C20).128(C2×C4), (C2×C4×D5).396C22, SmallGroup(320,1060)

Series: Derived Chief Lower central Upper central

C1C20 — C2×C40.C4
C1C5C10Dic5C4×D5C4.F5C2×C4.F5 — C2×C40.C4
C5C10C20 — C2×C40.C4

Subgroups: 346 in 106 conjugacy classes, 52 normal (28 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×2], C22, C22 [×4], C5, C8 [×2], C8 [×6], C2×C4, C2×C4 [×5], C23, D5 [×2], C10, C10 [×2], C2×C8, C2×C8 [×7], M4(2) [×6], C22×C4, Dic5 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C8.C4 [×4], C22×C8, C2×M4(2) [×2], C52C8 [×2], C40 [×2], C5⋊C8 [×4], C4×D5 [×4], C2×Dic5, C2×C20, C22×D5, C2×C8.C4, C8×D5 [×4], C2×C52C8, C2×C40, C4.F5 [×4], C4.F5 [×2], C2×C5⋊C8 [×2], C2×C4×D5, C40.C4 [×4], D5×C2×C8, C2×C4.F5 [×2], C2×C40.C4

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], Q8 [×2], C23, C4⋊C4 [×4], C22×C4, C2×D4, C2×Q8, F5, C8.C4 [×2], C2×C4⋊C4, C2×F5 [×3], C2×C8.C4, C4⋊F5 [×2], C22×F5, C40.C4 [×2], C2×C4⋊F5, C2×C40.C4

Generators and relations
 G = < a,b,c | a2=b40=1, c4=b20, ab=ba, ac=ca, cbc-1=b3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 120)(2 81)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 100)(22 101)(23 102)(24 103)(25 104)(26 105)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 115)(37 116)(38 117)(39 118)(40 119)(41 146)(42 147)(43 148)(44 149)(45 150)(46 151)(47 152)(48 153)(49 154)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 121)(57 122)(58 123)(59 124)(60 125)(61 126)(62 127)(63 128)(64 129)(65 130)(66 131)(67 132)(68 133)(69 134)(70 135)(71 136)(72 137)(73 138)(74 139)(75 140)(76 141)(77 142)(78 143)(79 144)(80 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 63 110 138 21 43 90 158)(2 50 119 141 22 70 99 121)(3 77 88 144 23 57 108 124)(4 64 97 147 24 44 117 127)(5 51 106 150 25 71 86 130)(6 78 115 153 26 58 95 133)(7 65 84 156 27 45 104 136)(8 52 93 159 28 72 113 139)(9 79 102 122 29 59 82 142)(10 66 111 125 30 46 91 145)(11 53 120 128 31 73 100 148)(12 80 89 131 32 60 109 151)(13 67 98 134 33 47 118 154)(14 54 107 137 34 74 87 157)(15 41 116 140 35 61 96 160)(16 68 85 143 36 48 105 123)(17 55 94 146 37 75 114 126)(18 42 103 149 38 62 83 129)(19 69 112 152 39 49 92 132)(20 56 81 155 40 76 101 135)

G:=sub<Sym(160)| (1,120)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,121)(57,122)(58,123)(59,124)(60,125)(61,126)(62,127)(63,128)(64,129)(65,130)(66,131)(67,132)(68,133)(69,134)(70,135)(71,136)(72,137)(73,138)(74,139)(75,140)(76,141)(77,142)(78,143)(79,144)(80,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,63,110,138,21,43,90,158)(2,50,119,141,22,70,99,121)(3,77,88,144,23,57,108,124)(4,64,97,147,24,44,117,127)(5,51,106,150,25,71,86,130)(6,78,115,153,26,58,95,133)(7,65,84,156,27,45,104,136)(8,52,93,159,28,72,113,139)(9,79,102,122,29,59,82,142)(10,66,111,125,30,46,91,145)(11,53,120,128,31,73,100,148)(12,80,89,131,32,60,109,151)(13,67,98,134,33,47,118,154)(14,54,107,137,34,74,87,157)(15,41,116,140,35,61,96,160)(16,68,85,143,36,48,105,123)(17,55,94,146,37,75,114,126)(18,42,103,149,38,62,83,129)(19,69,112,152,39,49,92,132)(20,56,81,155,40,76,101,135)>;

G:=Group( (1,120)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,121)(57,122)(58,123)(59,124)(60,125)(61,126)(62,127)(63,128)(64,129)(65,130)(66,131)(67,132)(68,133)(69,134)(70,135)(71,136)(72,137)(73,138)(74,139)(75,140)(76,141)(77,142)(78,143)(79,144)(80,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,63,110,138,21,43,90,158)(2,50,119,141,22,70,99,121)(3,77,88,144,23,57,108,124)(4,64,97,147,24,44,117,127)(5,51,106,150,25,71,86,130)(6,78,115,153,26,58,95,133)(7,65,84,156,27,45,104,136)(8,52,93,159,28,72,113,139)(9,79,102,122,29,59,82,142)(10,66,111,125,30,46,91,145)(11,53,120,128,31,73,100,148)(12,80,89,131,32,60,109,151)(13,67,98,134,33,47,118,154)(14,54,107,137,34,74,87,157)(15,41,116,140,35,61,96,160)(16,68,85,143,36,48,105,123)(17,55,94,146,37,75,114,126)(18,42,103,149,38,62,83,129)(19,69,112,152,39,49,92,132)(20,56,81,155,40,76,101,135) );

G=PermutationGroup([(1,120),(2,81),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,100),(22,101),(23,102),(24,103),(25,104),(26,105),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,115),(37,116),(38,117),(39,118),(40,119),(41,146),(42,147),(43,148),(44,149),(45,150),(46,151),(47,152),(48,153),(49,154),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,121),(57,122),(58,123),(59,124),(60,125),(61,126),(62,127),(63,128),(64,129),(65,130),(66,131),(67,132),(68,133),(69,134),(70,135),(71,136),(72,137),(73,138),(74,139),(75,140),(76,141),(77,142),(78,143),(79,144),(80,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,63,110,138,21,43,90,158),(2,50,119,141,22,70,99,121),(3,77,88,144,23,57,108,124),(4,64,97,147,24,44,117,127),(5,51,106,150,25,71,86,130),(6,78,115,153,26,58,95,133),(7,65,84,156,27,45,104,136),(8,52,93,159,28,72,113,139),(9,79,102,122,29,59,82,142),(10,66,111,125,30,46,91,145),(11,53,120,128,31,73,100,148),(12,80,89,131,32,60,109,151),(13,67,98,134,33,47,118,154),(14,54,107,137,34,74,87,157),(15,41,116,140,35,61,96,160),(16,68,85,143,36,48,105,123),(17,55,94,146,37,75,114,126),(18,42,103,149,38,62,83,129),(19,69,112,152,39,49,92,132),(20,56,81,155,40,76,101,135)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0040000
0004000
0000400
0000040
,
1420000
0380000
00027734
001427340
00703427
001434727
,
3800000
530000
0050368
00082813
003313288
00338360

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[14,0,0,0,0,0,2,38,0,0,0,0,0,0,0,14,7,14,0,0,27,27,0,34,0,0,7,34,34,7,0,0,34,0,27,27],[38,5,0,0,0,0,0,3,0,0,0,0,0,0,5,0,33,33,0,0,0,8,13,8,0,0,36,28,28,36,0,0,8,13,8,0] >;

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F 5 8A8B8C8D8E8F8G8H8I···8P10A10B10C20A20B20C20D40A···40H
order1222224444445888888888···81010102020202040···40
size11111010225555422221010101020···2044444444···4

44 irreducible representations

dim111111122222444444
type+++++-+-+++
imageC1C2C2C2C4C4C4D4Q8D4Q8C8.C4F5C2×F5C2×F5C4⋊F5C4⋊F5C40.C4
kernelC2×C40.C4C40.C4D5×C2×C8C2×C4.F5C8×D5C2×C52C8C2×C40C4×D5C4×D5C2×Dic5C22×D5C10C2×C8C8C2×C4C4C22C2
# reps141242211118121228

In GAP, Magma, Sage, TeX

C_2\times C_{40}.C_4
% in TeX

G:=Group("C2xC40.C4");
// GroupNames label

G:=SmallGroup(320,1060);
// by ID

G=gap.SmallGroup(320,1060);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,100,136,1684,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^2=b^40=1,c^4=b^20,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽