Copied to
clipboard

?

G = C2×D4.F5order 320 = 26·5

Direct product of C2 and D4.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4.F5, Dic5.17C24, C5⋊C8.1C23, C101(C8○D4), D5⋊C86C22, (C2×D4).13F5, D4.11(C2×F5), C4.F57C22, C2.8(C23×F5), D42D5.2C4, (D4×C10).12C4, C10.7(C23×C4), C23.30(C2×F5), C4.25(C22×F5), C20.25(C22×C4), D10.1(C22×C4), (C4×D5).47C23, C22.F53C22, (C2×Dic10).15C4, Dic10.11(C2×C4), C22.1(C22×F5), Dic5.1(C22×C4), D42D5.15C22, (C2×Dic5).177C23, (C22×Dic5).191C22, C51(C2×C8○D4), (C2×D5⋊C8)⋊5C2, (C22×C5⋊C8)⋊9C2, (C2×C4.F5)⋊6C2, (C2×C5⋊C8)⋊11C22, C5⋊D4.1(C2×C4), (C2×C4).91(C2×F5), (C2×C20).70(C2×C4), (C5×D4).11(C2×C4), (C4×D5).31(C2×C4), (C2×C5⋊D4).10C4, (C2×C10).1(C22×C4), (C2×C4×D5).214C22, (C2×C22.F5)⋊10C2, (C2×D42D5).17C2, (C22×C10).31(C2×C4), (C2×Dic5).80(C2×C4), (C22×D5).60(C2×C4), SmallGroup(320,1593)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D4.F5
C1C5C10Dic5C5⋊C8C2×C5⋊C8C22×C5⋊C8 — C2×D4.F5
C5C10 — C2×D4.F5

Subgroups: 730 in 266 conjugacy classes, 140 normal (22 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×6], C22, C22 [×4], C22 [×8], C5, C8 [×8], C2×C4, C2×C4 [×15], D4 [×4], D4 [×8], Q8 [×4], C23 [×2], C23, D5 [×2], C10, C10 [×2], C10 [×4], C2×C8 [×16], M4(2) [×12], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C4○D4 [×8], Dic5 [×2], Dic5 [×4], C20 [×2], D10 [×2], D10 [×2], C2×C10, C2×C10 [×4], C2×C10 [×4], C22×C8 [×3], C2×M4(2) [×3], C8○D4 [×8], C2×C4○D4, C5⋊C8 [×8], Dic10 [×4], C4×D5 [×4], C2×Dic5, C2×Dic5 [×10], C5⋊D4 [×8], C2×C20, C5×D4 [×4], C22×D5, C22×C10 [×2], C2×C8○D4, D5⋊C8 [×4], C4.F5 [×4], C2×C5⋊C8 [×2], C2×C5⋊C8 [×10], C22.F5 [×8], C2×Dic10, C2×C4×D5, D42D5 [×8], C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, C2×D5⋊C8, C2×C4.F5, D4.F5 [×8], C22×C5⋊C8 [×2], C2×C22.F5 [×2], C2×D42D5, C2×D4.F5

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C24, F5, C8○D4 [×2], C23×C4, C2×F5 [×7], C2×C8○D4, C22×F5 [×7], D4.F5 [×2], C23×F5, C2×D4.F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 159)(2 160)(3 153)(4 154)(5 155)(6 156)(7 157)(8 158)(9 71)(10 72)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 121)(26 122)(27 123)(28 124)(29 125)(30 126)(31 127)(32 128)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(81 137)(82 138)(83 139)(84 140)(85 141)(86 142)(87 143)(88 144)(89 151)(90 152)(91 145)(92 146)(93 147)(94 148)(95 149)(96 150)(105 119)(106 120)(107 113)(108 114)(109 115)(110 116)(111 117)(112 118)
(1 7 5 3)(2 8 6 4)(9 95 13 91)(10 96 14 92)(11 89 15 93)(12 90 16 94)(17 130 21 134)(18 131 22 135)(19 132 23 136)(20 133 24 129)(25 139 29 143)(26 140 30 144)(27 141 31 137)(28 142 32 138)(33 74 37 78)(34 75 38 79)(35 76 39 80)(36 77 40 73)(41 115 45 119)(42 116 46 120)(43 117 47 113)(44 118 48 114)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 151 69 147)(66 152 70 148)(67 145 71 149)(68 146 72 150)(81 123 85 127)(82 124 86 128)(83 125 87 121)(84 126 88 122)(97 109 101 105)(98 110 102 106)(99 111 103 107)(100 112 104 108)(153 159 157 155)(154 160 158 156)
(1 61)(2 62)(3 63)(4 64)(5 57)(6 58)(7 59)(8 60)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 28)(18 29)(19 30)(20 31)(21 32)(22 25)(23 26)(24 27)(33 124)(34 125)(35 126)(36 127)(37 128)(38 121)(39 122)(40 123)(49 159)(50 160)(51 153)(52 154)(53 155)(54 156)(55 157)(56 158)(65 99)(66 100)(67 101)(68 102)(69 103)(70 104)(71 97)(72 98)(73 81)(74 82)(75 83)(76 84)(77 85)(78 86)(79 87)(80 88)(89 113)(90 114)(91 115)(92 116)(93 117)(94 118)(95 119)(96 120)(105 149)(106 150)(107 151)(108 152)(109 145)(110 146)(111 147)(112 148)(129 137)(130 138)(131 139)(132 140)(133 141)(134 142)(135 143)(136 144)
(1 97 18 133 111)(2 134 98 112 19)(3 105 135 20 99)(4 21 106 100 136)(5 101 22 129 107)(6 130 102 108 23)(7 109 131 24 103)(8 17 110 104 132)(9 125 85 93 49)(10 94 126 50 86)(11 51 95 87 127)(12 88 52 128 96)(13 121 81 89 53)(14 90 122 54 82)(15 55 91 83 123)(16 84 56 124 92)(25 137 151 57 67)(26 58 138 68 152)(27 69 59 145 139)(28 146 70 140 60)(29 141 147 61 71)(30 62 142 72 148)(31 65 63 149 143)(32 150 66 144 64)(33 116 48 76 158)(34 77 117 159 41)(35 160 78 42 118)(36 43 153 119 79)(37 120 44 80 154)(38 73 113 155 45)(39 156 74 46 114)(40 47 157 115 75)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,159)(2,160)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,71)(10,72)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,151)(90,152)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(105,119)(106,120)(107,113)(108,114)(109,115)(110,116)(111,117)(112,118), (1,7,5,3)(2,8,6,4)(9,95,13,91)(10,96,14,92)(11,89,15,93)(12,90,16,94)(17,130,21,134)(18,131,22,135)(19,132,23,136)(20,133,24,129)(25,139,29,143)(26,140,30,144)(27,141,31,137)(28,142,32,138)(33,74,37,78)(34,75,38,79)(35,76,39,80)(36,77,40,73)(41,115,45,119)(42,116,46,120)(43,117,47,113)(44,118,48,114)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,151,69,147)(66,152,70,148)(67,145,71,149)(68,146,72,150)(81,123,85,127)(82,124,86,128)(83,125,87,121)(84,126,88,122)(97,109,101,105)(98,110,102,106)(99,111,103,107)(100,112,104,108)(153,159,157,155)(154,160,158,156), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,124)(34,125)(35,126)(36,127)(37,128)(38,121)(39,122)(40,123)(49,159)(50,160)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,97)(72,98)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120)(105,149)(106,150)(107,151)(108,152)(109,145)(110,146)(111,147)(112,148)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144), (1,97,18,133,111)(2,134,98,112,19)(3,105,135,20,99)(4,21,106,100,136)(5,101,22,129,107)(6,130,102,108,23)(7,109,131,24,103)(8,17,110,104,132)(9,125,85,93,49)(10,94,126,50,86)(11,51,95,87,127)(12,88,52,128,96)(13,121,81,89,53)(14,90,122,54,82)(15,55,91,83,123)(16,84,56,124,92)(25,137,151,57,67)(26,58,138,68,152)(27,69,59,145,139)(28,146,70,140,60)(29,141,147,61,71)(30,62,142,72,148)(31,65,63,149,143)(32,150,66,144,64)(33,116,48,76,158)(34,77,117,159,41)(35,160,78,42,118)(36,43,153,119,79)(37,120,44,80,154)(38,73,113,155,45)(39,156,74,46,114)(40,47,157,115,75), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,159)(2,160)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,71)(10,72)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,151)(90,152)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(105,119)(106,120)(107,113)(108,114)(109,115)(110,116)(111,117)(112,118), (1,7,5,3)(2,8,6,4)(9,95,13,91)(10,96,14,92)(11,89,15,93)(12,90,16,94)(17,130,21,134)(18,131,22,135)(19,132,23,136)(20,133,24,129)(25,139,29,143)(26,140,30,144)(27,141,31,137)(28,142,32,138)(33,74,37,78)(34,75,38,79)(35,76,39,80)(36,77,40,73)(41,115,45,119)(42,116,46,120)(43,117,47,113)(44,118,48,114)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,151,69,147)(66,152,70,148)(67,145,71,149)(68,146,72,150)(81,123,85,127)(82,124,86,128)(83,125,87,121)(84,126,88,122)(97,109,101,105)(98,110,102,106)(99,111,103,107)(100,112,104,108)(153,159,157,155)(154,160,158,156), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,124)(34,125)(35,126)(36,127)(37,128)(38,121)(39,122)(40,123)(49,159)(50,160)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,97)(72,98)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120)(105,149)(106,150)(107,151)(108,152)(109,145)(110,146)(111,147)(112,148)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144), (1,97,18,133,111)(2,134,98,112,19)(3,105,135,20,99)(4,21,106,100,136)(5,101,22,129,107)(6,130,102,108,23)(7,109,131,24,103)(8,17,110,104,132)(9,125,85,93,49)(10,94,126,50,86)(11,51,95,87,127)(12,88,52,128,96)(13,121,81,89,53)(14,90,122,54,82)(15,55,91,83,123)(16,84,56,124,92)(25,137,151,57,67)(26,58,138,68,152)(27,69,59,145,139)(28,146,70,140,60)(29,141,147,61,71)(30,62,142,72,148)(31,65,63,149,143)(32,150,66,144,64)(33,116,48,76,158)(34,77,117,159,41)(35,160,78,42,118)(36,43,153,119,79)(37,120,44,80,154)(38,73,113,155,45)(39,156,74,46,114)(40,47,157,115,75), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,159),(2,160),(3,153),(4,154),(5,155),(6,156),(7,157),(8,158),(9,71),(10,72),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,121),(26,122),(27,123),(28,124),(29,125),(30,126),(31,127),(32,128),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(81,137),(82,138),(83,139),(84,140),(85,141),(86,142),(87,143),(88,144),(89,151),(90,152),(91,145),(92,146),(93,147),(94,148),(95,149),(96,150),(105,119),(106,120),(107,113),(108,114),(109,115),(110,116),(111,117),(112,118)], [(1,7,5,3),(2,8,6,4),(9,95,13,91),(10,96,14,92),(11,89,15,93),(12,90,16,94),(17,130,21,134),(18,131,22,135),(19,132,23,136),(20,133,24,129),(25,139,29,143),(26,140,30,144),(27,141,31,137),(28,142,32,138),(33,74,37,78),(34,75,38,79),(35,76,39,80),(36,77,40,73),(41,115,45,119),(42,116,46,120),(43,117,47,113),(44,118,48,114),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,151,69,147),(66,152,70,148),(67,145,71,149),(68,146,72,150),(81,123,85,127),(82,124,86,128),(83,125,87,121),(84,126,88,122),(97,109,101,105),(98,110,102,106),(99,111,103,107),(100,112,104,108),(153,159,157,155),(154,160,158,156)], [(1,61),(2,62),(3,63),(4,64),(5,57),(6,58),(7,59),(8,60),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,28),(18,29),(19,30),(20,31),(21,32),(22,25),(23,26),(24,27),(33,124),(34,125),(35,126),(36,127),(37,128),(38,121),(39,122),(40,123),(49,159),(50,160),(51,153),(52,154),(53,155),(54,156),(55,157),(56,158),(65,99),(66,100),(67,101),(68,102),(69,103),(70,104),(71,97),(72,98),(73,81),(74,82),(75,83),(76,84),(77,85),(78,86),(79,87),(80,88),(89,113),(90,114),(91,115),(92,116),(93,117),(94,118),(95,119),(96,120),(105,149),(106,150),(107,151),(108,152),(109,145),(110,146),(111,147),(112,148),(129,137),(130,138),(131,139),(132,140),(133,141),(134,142),(135,143),(136,144)], [(1,97,18,133,111),(2,134,98,112,19),(3,105,135,20,99),(4,21,106,100,136),(5,101,22,129,107),(6,130,102,108,23),(7,109,131,24,103),(8,17,110,104,132),(9,125,85,93,49),(10,94,126,50,86),(11,51,95,87,127),(12,88,52,128,96),(13,121,81,89,53),(14,90,122,54,82),(15,55,91,83,123),(16,84,56,124,92),(25,137,151,57,67),(26,58,138,68,152),(27,69,59,145,139),(28,146,70,140,60),(29,141,147,61,71),(30,62,142,72,148),(31,65,63,149,143),(32,150,66,144,64),(33,116,48,76,158),(34,77,117,159,41),(35,160,78,42,118),(36,43,153,119,79),(37,120,44,80,154),(38,73,113,155,45),(39,156,74,46,114),(40,47,157,115,75)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
004000000
000400000
00001000
00000100
00000010
00000001
,
90000000
032000000
003200000
003290000
00001000
00000100
00000010
00000001
,
032000000
90000000
009230000
009320000
000040000
000004000
000000400
000000040
,
10000000
01000000
00100000
00010000
000040404040
00001000
00000100
00000010
,
270000000
027000000
003800000
000380000
000036088
000088036
00003328330
0000513135

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,9,9,0,0,0,0,0,0,23,32,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0],[27,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,38,0,0,0,0,0,0,0,0,38,0,0,0,0,0,0,0,0,36,8,33,5,0,0,0,0,0,8,28,13,0,0,0,0,8,0,33,13,0,0,0,0,8,36,0,5] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J 5 8A···8H8I···8T10A10B10C10D10E10F10G20A20B
order1222222222444444444458···88···8101010101010102020
size1111222210102255551010101045···510···10444888888

50 irreducible representations

dim11111111111244448
type+++++++++++-
imageC1C2C2C2C2C2C2C4C4C4C4C8○D4F5C2×F5C2×F5C2×F5D4.F5
kernelC2×D4.F5C2×D5⋊C8C2×C4.F5D4.F5C22×C5⋊C8C2×C22.F5C2×D42D5C2×Dic10D42D5C2×C5⋊D4D4×C10C10C2×D4C2×C4D4C23C2
# reps11182212842811422

In GAP, Magma, Sage, TeX

C_2\times D_4.F_5
% in TeX

G:=Group("C2xD4.F5");
// GroupNames label

G:=SmallGroup(320,1593);
// by ID

G=gap.SmallGroup(320,1593);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,297,102,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽