direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic5⋊4D4, C24.53D10, C10⋊3(C4×D4), C23⋊4(C4×D5), Dic5⋊9(C2×D4), C22⋊C4⋊50D10, (C2×Dic5)⋊23D4, D10⋊3(C22×C4), (C2×C10).29C24, C10.29(C23×C4), (C23×Dic5)⋊3C2, Dic5⋊2(C22×C4), C22.124(D4×D5), C10.34(C22×D4), (C2×C20).570C23, (C4×Dic5)⋊73C22, (C22×C4).312D10, D10⋊C4⋊56C22, C22.18(C23×D5), C10.D4⋊57C22, (C23×C10).55C22, C23.319(C22×D5), C22.66(D4⋊2D5), (C22×C10).121C23, (C22×C20).351C22, (C2×Dic5).370C23, (C22×Dic5)⋊41C22, (C23×D5).106C22, (C22×D5).159C23, C5⋊3(C2×C4×D4), C2.2(C2×D4×D5), C22⋊2(C2×C4×D5), C5⋊D4⋊9(C2×C4), (C2×C5⋊D4)⋊13C4, (C2×C4×Dic5)⋊30C2, (D5×C22×C4)⋊16C2, (C2×C4×D5)⋊64C22, C2.10(D5×C22×C4), (C2×C10)⋊6(C22×C4), (C2×C22⋊C4)⋊19D5, C10.67(C2×C4○D4), C2.2(C2×D4⋊2D5), (C10×C22⋊C4)⋊25C2, (C22×C10)⋊16(C2×C4), (C2×Dic5)⋊25(C2×C4), (C2×C10).380(C2×D4), (C22×D5)⋊15(C2×C4), (C2×D10⋊C4)⋊30C2, (C22×C5⋊D4).8C2, (C2×C10.D4)⋊35C2, (C5×C22⋊C4)⋊60C22, (C2×C4).256(C22×D5), (C2×C5⋊D4).95C22, (C2×C10).167(C4○D4), SmallGroup(320,1157)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1358 in 426 conjugacy classes, 175 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×14], C22, C22 [×10], C22 [×28], C5, C2×C4 [×4], C2×C4 [×36], D4 [×16], C23, C23 [×6], C23 [×14], D5 [×4], C10 [×3], C10 [×4], C10 [×4], C42 [×4], C22⋊C4 [×4], C22⋊C4 [×4], C4⋊C4 [×4], C22×C4 [×2], C22×C4 [×19], C2×D4 [×12], C24, C24, Dic5 [×8], Dic5 [×2], C20 [×4], D10 [×4], D10 [×12], C2×C10, C2×C10 [×10], C2×C10 [×12], C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4×D4 [×8], C23×C4 [×2], C22×D4, C4×D5 [×8], C2×Dic5 [×14], C2×Dic5 [×10], C5⋊D4 [×16], C2×C20 [×4], C2×C20 [×4], C22×D5 [×6], C22×D5 [×4], C22×C10, C22×C10 [×6], C22×C10 [×4], C2×C4×D4, C4×Dic5 [×4], C10.D4 [×4], D10⋊C4 [×4], C5×C22⋊C4 [×4], C2×C4×D5 [×4], C2×C4×D5 [×4], C22×Dic5 [×3], C22×Dic5 [×4], C22×Dic5 [×4], C2×C5⋊D4 [×12], C22×C20 [×2], C23×D5, C23×C10, Dic5⋊4D4 [×8], C2×C4×Dic5, C2×C10.D4, C2×D10⋊C4, C10×C22⋊C4, D5×C22×C4, C23×Dic5, C22×C5⋊D4, C2×Dic5⋊4D4
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], C23 [×15], D5, C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, C4×D5 [×4], C22×D5 [×7], C2×C4×D4, C2×C4×D5 [×6], D4×D5 [×2], D4⋊2D5 [×2], C23×D5, Dic5⋊4D4 [×4], D5×C22×C4, C2×D4×D5, C2×D4⋊2D5, C2×Dic5⋊4D4
Generators and relations
G = < a,b,c,d,e | a2=b10=d4=e2=1, c2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=b-1, be=eb, cd=dc, ce=ec, ede=d-1 >
(1 107)(2 108)(3 109)(4 110)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 71)(21 98)(22 99)(23 100)(24 91)(25 92)(26 93)(27 94)(28 95)(29 96)(30 97)(31 124)(32 125)(33 126)(34 127)(35 128)(36 129)(37 130)(38 121)(39 122)(40 123)(41 118)(42 119)(43 120)(44 111)(45 112)(46 113)(47 114)(48 115)(49 116)(50 117)(51 144)(52 145)(53 146)(54 147)(55 148)(56 149)(57 150)(58 141)(59 142)(60 143)(61 138)(62 139)(63 140)(64 131)(65 132)(66 133)(67 134)(68 135)(69 136)(70 137)(81 158)(82 159)(83 160)(84 151)(85 152)(86 153)(87 154)(88 155)(89 156)(90 157)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 42 6 47)(2 41 7 46)(3 50 8 45)(4 49 9 44)(5 48 10 43)(11 136 16 131)(12 135 17 140)(13 134 18 139)(14 133 19 138)(15 132 20 137)(21 35 26 40)(22 34 27 39)(23 33 28 38)(24 32 29 37)(25 31 30 36)(51 85 56 90)(52 84 57 89)(53 83 58 88)(54 82 59 87)(55 81 60 86)(61 75 66 80)(62 74 67 79)(63 73 68 78)(64 72 69 77)(65 71 70 76)(91 125 96 130)(92 124 97 129)(93 123 98 128)(94 122 99 127)(95 121 100 126)(101 115 106 120)(102 114 107 119)(103 113 108 118)(104 112 109 117)(105 111 110 116)(141 155 146 160)(142 154 147 159)(143 153 148 158)(144 152 149 157)(145 151 150 156)
(1 134 27 147)(2 133 28 146)(3 132 29 145)(4 131 30 144)(5 140 21 143)(6 139 22 142)(7 138 23 141)(8 137 24 150)(9 136 25 149)(10 135 26 148)(11 36 152 49)(12 35 153 48)(13 34 154 47)(14 33 155 46)(15 32 156 45)(16 31 157 44)(17 40 158 43)(18 39 159 42)(19 38 160 41)(20 37 151 50)(51 110 64 97)(52 109 65 96)(53 108 66 95)(54 107 67 94)(55 106 68 93)(56 105 69 92)(57 104 70 91)(58 103 61 100)(59 102 62 99)(60 101 63 98)(71 130 84 117)(72 129 85 116)(73 128 86 115)(74 127 87 114)(75 126 88 113)(76 125 89 112)(77 124 90 111)(78 123 81 120)(79 122 82 119)(80 121 83 118)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 51)(9 52)(10 53)(11 125)(12 126)(13 127)(14 128)(15 129)(16 130)(17 121)(18 122)(19 123)(20 124)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
G:=sub<Sym(160)| (1,107)(2,108)(3,109)(4,110)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,98)(22,99)(23,100)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,97)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,121)(39,122)(40,123)(41,118)(42,119)(43,120)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,141)(59,142)(60,143)(61,138)(62,139)(63,140)(64,131)(65,132)(66,133)(67,134)(68,135)(69,136)(70,137)(81,158)(82,159)(83,160)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,42,6,47)(2,41,7,46)(3,50,8,45)(4,49,9,44)(5,48,10,43)(11,136,16,131)(12,135,17,140)(13,134,18,139)(14,133,19,138)(15,132,20,137)(21,35,26,40)(22,34,27,39)(23,33,28,38)(24,32,29,37)(25,31,30,36)(51,85,56,90)(52,84,57,89)(53,83,58,88)(54,82,59,87)(55,81,60,86)(61,75,66,80)(62,74,67,79)(63,73,68,78)(64,72,69,77)(65,71,70,76)(91,125,96,130)(92,124,97,129)(93,123,98,128)(94,122,99,127)(95,121,100,126)(101,115,106,120)(102,114,107,119)(103,113,108,118)(104,112,109,117)(105,111,110,116)(141,155,146,160)(142,154,147,159)(143,153,148,158)(144,152,149,157)(145,151,150,156), (1,134,27,147)(2,133,28,146)(3,132,29,145)(4,131,30,144)(5,140,21,143)(6,139,22,142)(7,138,23,141)(8,137,24,150)(9,136,25,149)(10,135,26,148)(11,36,152,49)(12,35,153,48)(13,34,154,47)(14,33,155,46)(15,32,156,45)(16,31,157,44)(17,40,158,43)(18,39,159,42)(19,38,160,41)(20,37,151,50)(51,110,64,97)(52,109,65,96)(53,108,66,95)(54,107,67,94)(55,106,68,93)(56,105,69,92)(57,104,70,91)(58,103,61,100)(59,102,62,99)(60,101,63,98)(71,130,84,117)(72,129,85,116)(73,128,86,115)(74,127,87,114)(75,126,88,113)(76,125,89,112)(77,124,90,111)(78,123,81,120)(79,122,82,119)(80,121,83,118), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,121)(18,122)(19,123)(20,124)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160)>;
G:=Group( (1,107)(2,108)(3,109)(4,110)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,98)(22,99)(23,100)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,97)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,121)(39,122)(40,123)(41,118)(42,119)(43,120)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,141)(59,142)(60,143)(61,138)(62,139)(63,140)(64,131)(65,132)(66,133)(67,134)(68,135)(69,136)(70,137)(81,158)(82,159)(83,160)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,42,6,47)(2,41,7,46)(3,50,8,45)(4,49,9,44)(5,48,10,43)(11,136,16,131)(12,135,17,140)(13,134,18,139)(14,133,19,138)(15,132,20,137)(21,35,26,40)(22,34,27,39)(23,33,28,38)(24,32,29,37)(25,31,30,36)(51,85,56,90)(52,84,57,89)(53,83,58,88)(54,82,59,87)(55,81,60,86)(61,75,66,80)(62,74,67,79)(63,73,68,78)(64,72,69,77)(65,71,70,76)(91,125,96,130)(92,124,97,129)(93,123,98,128)(94,122,99,127)(95,121,100,126)(101,115,106,120)(102,114,107,119)(103,113,108,118)(104,112,109,117)(105,111,110,116)(141,155,146,160)(142,154,147,159)(143,153,148,158)(144,152,149,157)(145,151,150,156), (1,134,27,147)(2,133,28,146)(3,132,29,145)(4,131,30,144)(5,140,21,143)(6,139,22,142)(7,138,23,141)(8,137,24,150)(9,136,25,149)(10,135,26,148)(11,36,152,49)(12,35,153,48)(13,34,154,47)(14,33,155,46)(15,32,156,45)(16,31,157,44)(17,40,158,43)(18,39,159,42)(19,38,160,41)(20,37,151,50)(51,110,64,97)(52,109,65,96)(53,108,66,95)(54,107,67,94)(55,106,68,93)(56,105,69,92)(57,104,70,91)(58,103,61,100)(59,102,62,99)(60,101,63,98)(71,130,84,117)(72,129,85,116)(73,128,86,115)(74,127,87,114)(75,126,88,113)(76,125,89,112)(77,124,90,111)(78,123,81,120)(79,122,82,119)(80,121,83,118), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,121)(18,122)(19,123)(20,124)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160) );
G=PermutationGroup([(1,107),(2,108),(3,109),(4,110),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,71),(21,98),(22,99),(23,100),(24,91),(25,92),(26,93),(27,94),(28,95),(29,96),(30,97),(31,124),(32,125),(33,126),(34,127),(35,128),(36,129),(37,130),(38,121),(39,122),(40,123),(41,118),(42,119),(43,120),(44,111),(45,112),(46,113),(47,114),(48,115),(49,116),(50,117),(51,144),(52,145),(53,146),(54,147),(55,148),(56,149),(57,150),(58,141),(59,142),(60,143),(61,138),(62,139),(63,140),(64,131),(65,132),(66,133),(67,134),(68,135),(69,136),(70,137),(81,158),(82,159),(83,160),(84,151),(85,152),(86,153),(87,154),(88,155),(89,156),(90,157)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,42,6,47),(2,41,7,46),(3,50,8,45),(4,49,9,44),(5,48,10,43),(11,136,16,131),(12,135,17,140),(13,134,18,139),(14,133,19,138),(15,132,20,137),(21,35,26,40),(22,34,27,39),(23,33,28,38),(24,32,29,37),(25,31,30,36),(51,85,56,90),(52,84,57,89),(53,83,58,88),(54,82,59,87),(55,81,60,86),(61,75,66,80),(62,74,67,79),(63,73,68,78),(64,72,69,77),(65,71,70,76),(91,125,96,130),(92,124,97,129),(93,123,98,128),(94,122,99,127),(95,121,100,126),(101,115,106,120),(102,114,107,119),(103,113,108,118),(104,112,109,117),(105,111,110,116),(141,155,146,160),(142,154,147,159),(143,153,148,158),(144,152,149,157),(145,151,150,156)], [(1,134,27,147),(2,133,28,146),(3,132,29,145),(4,131,30,144),(5,140,21,143),(6,139,22,142),(7,138,23,141),(8,137,24,150),(9,136,25,149),(10,135,26,148),(11,36,152,49),(12,35,153,48),(13,34,154,47),(14,33,155,46),(15,32,156,45),(16,31,157,44),(17,40,158,43),(18,39,159,42),(19,38,160,41),(20,37,151,50),(51,110,64,97),(52,109,65,96),(53,108,66,95),(54,107,67,94),(55,106,68,93),(56,105,69,92),(57,104,70,91),(58,103,61,100),(59,102,62,99),(60,101,63,98),(71,130,84,117),(72,129,85,116),(73,128,86,115),(74,127,87,114),(75,126,88,113),(76,125,89,112),(77,124,90,111),(78,123,81,120),(79,122,82,119),(80,121,83,118)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,51),(9,52),(10,53),(11,125),(12,126),(13,127),(14,128),(15,129),(16,130),(17,121),(18,122),(19,123),(20,124),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 40 | 0 | 0 | 0 | 0 |
8 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 1 | 0 | 0 |
0 | 0 | 33 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
34 | 1 | 0 | 0 | 0 | 0 |
34 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 32 | 0 | 0 |
0 | 0 | 22 | 19 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 40 | 0 | 0 | 0 | 0 |
7 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 1 | 0 | 0 |
0 | 0 | 34 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 39 |
0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 39 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,8,0,0,0,0,40,40,0,0,0,0,0,0,34,33,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[34,34,0,0,0,0,1,7,0,0,0,0,0,0,22,22,0,0,0,0,32,19,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,7,0,0,0,0,40,34,0,0,0,0,0,0,34,34,0,0,0,0,1,7,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,39,1] >;
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4P | 4Q | ··· | 4X | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C4×D5 | D4×D5 | D4⋊2D5 |
kernel | C2×Dic5⋊4D4 | Dic5⋊4D4 | C2×C4×Dic5 | C2×C10.D4 | C2×D10⋊C4 | C10×C22⋊C4 | D5×C22×C4 | C23×Dic5 | C22×C5⋊D4 | C2×C5⋊D4 | C2×Dic5 | C2×C22⋊C4 | C2×C10 | C22⋊C4 | C22×C4 | C24 | C23 | C22 | C22 |
# reps | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 16 | 4 | 2 | 4 | 8 | 4 | 2 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2\times Dic_5\rtimes_4D_4
% in TeX
G:=Group("C2xDic5:4D4");
// GroupNames label
G:=SmallGroup(320,1157);
// by ID
G=gap.SmallGroup(320,1157);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,297,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^10=d^4=e^2=1,c^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations