Copied to
clipboard

?

G = D4×C5⋊C8order 320 = 26·5

Direct product of D4 and C5⋊C8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×C5⋊C8, C53(C8×D4), C202(C2×C8), (C5×D4)⋊2C8, C2.5(D4×F5), C20⋊C85C2, (D4×C10).8C4, C10.26(C4×D4), (C2×D4).12F5, C4⋊Dic5.13C4, C2.5(D4.F5), C23.D5.5C4, C23.29(C2×F5), C10.14(C8○D4), C10.21(C22×C8), (D4×Dic5).17C2, Dic5.78(C2×D4), C23.2F58C2, Dic5.57(C4○D4), C22.51(C22×F5), (C4×Dic5).194C22, (C2×Dic5).351C23, (C22×Dic5).184C22, C41(C2×C5⋊C8), (C4×C5⋊C8)⋊5C2, C221(C2×C5⋊C8), (C2×C10)⋊2(C2×C8), (C22×C5⋊C8)⋊4C2, C2.6(C22×C5⋊C8), (C2×C4).80(C2×F5), (C2×C20).54(C2×C4), (C2×C5⋊C8).39C22, (C2×C10).75(C22×C4), (C22×C10).23(C2×C4), (C2×Dic5).70(C2×C4), SmallGroup(320,1110)

Series: Derived Chief Lower central Upper central

C1C10 — D4×C5⋊C8
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — D4×C5⋊C8
C5C10 — D4×C5⋊C8

Subgroups: 394 in 134 conjugacy classes, 64 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×5], C22, C22 [×4], C22 [×4], C5, C8 [×5], C2×C4, C2×C4 [×8], D4 [×4], C23 [×2], C10 [×3], C10 [×4], C42, C22⋊C4 [×2], C4⋊C4, C2×C8 [×8], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5 [×3], C20 [×2], C2×C10, C2×C10 [×4], C2×C10 [×4], C4×C8, C22⋊C8 [×2], C4⋊C8, C4×D4, C22×C8 [×2], C5⋊C8 [×2], C5⋊C8 [×3], C2×Dic5 [×2], C2×Dic5 [×2], C2×Dic5 [×4], C2×C20, C5×D4 [×4], C22×C10 [×2], C8×D4, C4×Dic5, C4⋊Dic5, C23.D5 [×2], C2×C5⋊C8 [×2], C2×C5⋊C8 [×2], C2×C5⋊C8 [×4], C22×Dic5 [×2], D4×C10, C4×C5⋊C8, C20⋊C8, C23.2F5 [×2], D4×Dic5, C22×C5⋊C8 [×2], D4×C5⋊C8

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], D4 [×2], C23, C2×C8 [×6], C22×C4, C2×D4, C4○D4, F5, C4×D4, C22×C8, C8○D4, C5⋊C8 [×4], C2×F5 [×3], C8×D4, C2×C5⋊C8 [×6], C22×F5, D4.F5, D4×F5, C22×C5⋊C8, D4×C5⋊C8

Generators and relations
 G = < a,b,c,d | a4=b2=c5=d8=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 12 137 18)(2 13 138 19)(3 14 139 20)(4 15 140 21)(5 16 141 22)(6 9 142 23)(7 10 143 24)(8 11 144 17)(25 47 151 54)(26 48 152 55)(27 41 145 56)(28 42 146 49)(29 43 147 50)(30 44 148 51)(31 45 149 52)(32 46 150 53)(33 136 102 69)(34 129 103 70)(35 130 104 71)(36 131 97 72)(37 132 98 65)(38 133 99 66)(39 134 100 67)(40 135 101 68)(57 155 109 117)(58 156 110 118)(59 157 111 119)(60 158 112 120)(61 159 105 113)(62 160 106 114)(63 153 107 115)(64 154 108 116)(73 82 90 127)(74 83 91 128)(75 84 92 121)(76 85 93 122)(77 86 94 123)(78 87 95 124)(79 88 96 125)(80 81 89 126)
(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)(25 151)(26 152)(27 145)(28 146)(29 147)(30 148)(31 149)(32 150)(33 102)(34 103)(35 104)(36 97)(37 98)(38 99)(39 100)(40 101)(57 109)(58 110)(59 111)(60 112)(61 105)(62 106)(63 107)(64 108)(81 126)(82 127)(83 128)(84 121)(85 122)(86 123)(87 124)(88 125)
(1 92 132 50 113)(2 51 93 114 133)(3 115 52 134 94)(4 135 116 95 53)(5 96 136 54 117)(6 55 89 118 129)(7 119 56 130 90)(8 131 120 91 49)(9 26 126 58 103)(10 59 27 104 127)(11 97 60 128 28)(12 121 98 29 61)(13 30 122 62 99)(14 63 31 100 123)(15 101 64 124 32)(16 125 102 25 57)(17 36 112 83 146)(18 84 37 147 105)(19 148 85 106 38)(20 107 149 39 86)(21 40 108 87 150)(22 88 33 151 109)(23 152 81 110 34)(24 111 145 35 82)(41 71 73 143 157)(42 144 72 158 74)(43 159 137 75 65)(44 76 160 66 138)(45 67 77 139 153)(46 140 68 154 78)(47 155 141 79 69)(48 80 156 70 142)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,12,137,18)(2,13,138,19)(3,14,139,20)(4,15,140,21)(5,16,141,22)(6,9,142,23)(7,10,143,24)(8,11,144,17)(25,47,151,54)(26,48,152,55)(27,41,145,56)(28,42,146,49)(29,43,147,50)(30,44,148,51)(31,45,149,52)(32,46,150,53)(33,136,102,69)(34,129,103,70)(35,130,104,71)(36,131,97,72)(37,132,98,65)(38,133,99,66)(39,134,100,67)(40,135,101,68)(57,155,109,117)(58,156,110,118)(59,157,111,119)(60,158,112,120)(61,159,105,113)(62,160,106,114)(63,153,107,115)(64,154,108,116)(73,82,90,127)(74,83,91,128)(75,84,92,121)(76,85,93,122)(77,86,94,123)(78,87,95,124)(79,88,96,125)(80,81,89,126), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(25,151)(26,152)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,102)(34,103)(35,104)(36,97)(37,98)(38,99)(39,100)(40,101)(57,109)(58,110)(59,111)(60,112)(61,105)(62,106)(63,107)(64,108)(81,126)(82,127)(83,128)(84,121)(85,122)(86,123)(87,124)(88,125), (1,92,132,50,113)(2,51,93,114,133)(3,115,52,134,94)(4,135,116,95,53)(5,96,136,54,117)(6,55,89,118,129)(7,119,56,130,90)(8,131,120,91,49)(9,26,126,58,103)(10,59,27,104,127)(11,97,60,128,28)(12,121,98,29,61)(13,30,122,62,99)(14,63,31,100,123)(15,101,64,124,32)(16,125,102,25,57)(17,36,112,83,146)(18,84,37,147,105)(19,148,85,106,38)(20,107,149,39,86)(21,40,108,87,150)(22,88,33,151,109)(23,152,81,110,34)(24,111,145,35,82)(41,71,73,143,157)(42,144,72,158,74)(43,159,137,75,65)(44,76,160,66,138)(45,67,77,139,153)(46,140,68,154,78)(47,155,141,79,69)(48,80,156,70,142), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,12,137,18)(2,13,138,19)(3,14,139,20)(4,15,140,21)(5,16,141,22)(6,9,142,23)(7,10,143,24)(8,11,144,17)(25,47,151,54)(26,48,152,55)(27,41,145,56)(28,42,146,49)(29,43,147,50)(30,44,148,51)(31,45,149,52)(32,46,150,53)(33,136,102,69)(34,129,103,70)(35,130,104,71)(36,131,97,72)(37,132,98,65)(38,133,99,66)(39,134,100,67)(40,135,101,68)(57,155,109,117)(58,156,110,118)(59,157,111,119)(60,158,112,120)(61,159,105,113)(62,160,106,114)(63,153,107,115)(64,154,108,116)(73,82,90,127)(74,83,91,128)(75,84,92,121)(76,85,93,122)(77,86,94,123)(78,87,95,124)(79,88,96,125)(80,81,89,126), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(25,151)(26,152)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,102)(34,103)(35,104)(36,97)(37,98)(38,99)(39,100)(40,101)(57,109)(58,110)(59,111)(60,112)(61,105)(62,106)(63,107)(64,108)(81,126)(82,127)(83,128)(84,121)(85,122)(86,123)(87,124)(88,125), (1,92,132,50,113)(2,51,93,114,133)(3,115,52,134,94)(4,135,116,95,53)(5,96,136,54,117)(6,55,89,118,129)(7,119,56,130,90)(8,131,120,91,49)(9,26,126,58,103)(10,59,27,104,127)(11,97,60,128,28)(12,121,98,29,61)(13,30,122,62,99)(14,63,31,100,123)(15,101,64,124,32)(16,125,102,25,57)(17,36,112,83,146)(18,84,37,147,105)(19,148,85,106,38)(20,107,149,39,86)(21,40,108,87,150)(22,88,33,151,109)(23,152,81,110,34)(24,111,145,35,82)(41,71,73,143,157)(42,144,72,158,74)(43,159,137,75,65)(44,76,160,66,138)(45,67,77,139,153)(46,140,68,154,78)(47,155,141,79,69)(48,80,156,70,142), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,12,137,18),(2,13,138,19),(3,14,139,20),(4,15,140,21),(5,16,141,22),(6,9,142,23),(7,10,143,24),(8,11,144,17),(25,47,151,54),(26,48,152,55),(27,41,145,56),(28,42,146,49),(29,43,147,50),(30,44,148,51),(31,45,149,52),(32,46,150,53),(33,136,102,69),(34,129,103,70),(35,130,104,71),(36,131,97,72),(37,132,98,65),(38,133,99,66),(39,134,100,67),(40,135,101,68),(57,155,109,117),(58,156,110,118),(59,157,111,119),(60,158,112,120),(61,159,105,113),(62,160,106,114),(63,153,107,115),(64,154,108,116),(73,82,90,127),(74,83,91,128),(75,84,92,121),(76,85,93,122),(77,86,94,123),(78,87,95,124),(79,88,96,125),(80,81,89,126)], [(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22),(25,151),(26,152),(27,145),(28,146),(29,147),(30,148),(31,149),(32,150),(33,102),(34,103),(35,104),(36,97),(37,98),(38,99),(39,100),(40,101),(57,109),(58,110),(59,111),(60,112),(61,105),(62,106),(63,107),(64,108),(81,126),(82,127),(83,128),(84,121),(85,122),(86,123),(87,124),(88,125)], [(1,92,132,50,113),(2,51,93,114,133),(3,115,52,134,94),(4,135,116,95,53),(5,96,136,54,117),(6,55,89,118,129),(7,119,56,130,90),(8,131,120,91,49),(9,26,126,58,103),(10,59,27,104,127),(11,97,60,128,28),(12,121,98,29,61),(13,30,122,62,99),(14,63,31,100,123),(15,101,64,124,32),(16,125,102,25,57),(17,36,112,83,146),(18,84,37,147,105),(19,148,85,106,38),(20,107,149,39,86),(21,40,108,87,150),(22,88,33,151,109),(23,152,81,110,34),(24,111,145,35,82),(41,71,73,143,157),(42,144,72,158,74),(43,159,137,75,65),(44,76,160,66,138),(45,67,77,139,153),(46,140,68,154,78),(47,155,141,79,69),(48,80,156,70,142)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL8(𝔽41)

402000000
401000000
000400000
00100000
00001000
00000100
00000010
00000001
,
10000000
140000000
00100000
000400000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
000000040
000010040
000001040
000000140
,
270000000
027000000
00100000
00010000
00001511628
00002139282
0000213398
000013192630

G:=sub<GL(8,GF(41))| [40,40,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40],[27,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,15,21,2,13,0,0,0,0,11,39,13,19,0,0,0,0,6,28,39,26,0,0,0,0,28,2,8,30] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G···4L 5 8A···8H8I···8T10A10B10C10D10E10F10G20A20B
order122222224444444···458···88···8101010101010102020
size1111222222555510···1045···510···10444888888

50 irreducible representations

dim1111111111222444488
type+++++++++-+-+
imageC1C2C2C2C2C2C4C4C4C8D4C4○D4C8○D4F5C2×F5C5⋊C8C2×F5D4.F5D4×F5
kernelD4×C5⋊C8C4×C5⋊C8C20⋊C8C23.2F5D4×Dic5C22×C5⋊C8C4⋊Dic5C23.D5D4×C10C5×D4C5⋊C8Dic5C10C2×D4C2×C4D4C23C2C2
# reps11121224216224114211

In GAP, Magma, Sage, TeX

D_4\times C_5\rtimes C_8
% in TeX

G:=Group("D4xC5:C8");
// GroupNames label

G:=SmallGroup(320,1110);
// by ID

G=gap.SmallGroup(320,1110);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^5=d^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽