Copied to
clipboard

?

G = D4×Dic10order 320 = 26·5

Direct product of D4 and Dic10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×Dic10, C42.101D10, C10.552- (1+4), C51(D4×Q8), (C5×D4)⋊5Q8, C201(C2×Q8), C20⋊Q814C2, (C4×D4).10D5, C41(C2×Dic10), C4.138(D4×D5), C4⋊C4.276D10, C202Q821C2, (D4×C20).11C2, C20.344(C2×D4), (C4×Dic10)⋊24C2, (C2×D4).241D10, C20.48D46C2, (C2×C10).81C24, (D4×Dic5).11C2, Dic5.40(C2×D4), C221(C2×Dic10), C10.45(C22×D4), C10.12(C22×Q8), (C2×C20).153C23, (C4×C20).144C22, C22⋊C4.104D10, (C22×Dic10)⋊8C2, (C22×C4).201D10, Dic5.14D46C2, C23.D5.7C22, (D4×C10).248C22, C4⋊Dic5.197C22, (C22×C20).76C22, (C4×Dic5).79C22, C2.14(C22×Dic10), C10.D4.5C22, C22.109(C23×D5), C23.162(C22×D5), (C22×C10).151C23, (C2×Dic5).209C23, C2.13(D4.10D10), (C2×Dic10).242C22, (C22×Dic5).90C22, C2.18(C2×D4×D5), (C2×C10)⋊1(C2×Q8), (C5×C4⋊C4).317C22, (C2×C4).152(C22×D5), (C5×C22⋊C4).103C22, SmallGroup(320,1209)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D4×Dic10
C1C5C10C2×C10C2×Dic5C22×Dic5D4×Dic5 — D4×Dic10
C5C2×C10 — D4×Dic10

Subgroups: 886 in 280 conjugacy classes, 123 normal (29 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×13], C22, C22 [×4], C22 [×4], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×20], D4 [×4], Q8 [×16], C23 [×2], C10 [×3], C10 [×4], C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×11], C22×C4 [×2], C22×C4 [×4], C2×D4, C2×Q8 [×15], Dic5 [×4], Dic5 [×6], C20 [×4], C20 [×3], C2×C10, C2×C10 [×4], C2×C10 [×4], C4×D4, C4×D4 [×2], C4×Q8, C22⋊Q8 [×6], C4⋊Q8 [×3], C22×Q8 [×2], Dic10 [×4], Dic10 [×12], C2×Dic5 [×8], C2×Dic5 [×8], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×4], C22×C10 [×2], D4×Q8, C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5, C4⋊Dic5 [×4], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×Dic10 [×6], C2×Dic10 [×8], C22×Dic5 [×4], C22×C20 [×2], D4×C10, C4×Dic10, C202Q8, Dic5.14D4 [×4], C20⋊Q8 [×2], C20.48D4 [×2], D4×Dic5 [×2], D4×C20, C22×Dic10 [×2], D4×Dic10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D5, C2×D4 [×6], C2×Q8 [×6], C24, D10 [×7], C22×D4, C22×Q8, 2- (1+4), Dic10 [×4], C22×D5 [×7], D4×Q8, C2×Dic10 [×6], D4×D5 [×2], C23×D5, C22×Dic10, C2×D4×D5, D4.10D10, D4×Dic10

Generators and relations
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 52 136 21)(2 53 137 22)(3 54 138 23)(4 55 139 24)(5 56 140 25)(6 57 121 26)(7 58 122 27)(8 59 123 28)(9 60 124 29)(10 41 125 30)(11 42 126 31)(12 43 127 32)(13 44 128 33)(14 45 129 34)(15 46 130 35)(16 47 131 36)(17 48 132 37)(18 49 133 38)(19 50 134 39)(20 51 135 40)(61 90 158 120)(62 91 159 101)(63 92 160 102)(64 93 141 103)(65 94 142 104)(66 95 143 105)(67 96 144 106)(68 97 145 107)(69 98 146 108)(70 99 147 109)(71 100 148 110)(72 81 149 111)(73 82 150 112)(74 83 151 113)(75 84 152 114)(76 85 153 115)(77 86 154 116)(78 87 155 117)(79 88 156 118)(80 89 157 119)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 135)(42 136)(43 137)(44 138)(45 139)(46 140)(47 121)(48 122)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 129)(56 130)(57 131)(58 132)(59 133)(60 134)(61 100)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 97)(79 98)(80 99)(101 149)(102 150)(103 151)(104 152)(105 153)(106 154)(107 155)(108 156)(109 157)(110 158)(111 159)(112 160)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 81 11 91)(2 100 12 90)(3 99 13 89)(4 98 14 88)(5 97 15 87)(6 96 16 86)(7 95 17 85)(8 94 18 84)(9 93 19 83)(10 92 20 82)(21 72 31 62)(22 71 32 61)(23 70 33 80)(24 69 34 79)(25 68 35 78)(26 67 36 77)(27 66 37 76)(28 65 38 75)(29 64 39 74)(30 63 40 73)(41 160 51 150)(42 159 52 149)(43 158 53 148)(44 157 54 147)(45 156 55 146)(46 155 56 145)(47 154 57 144)(48 153 58 143)(49 152 59 142)(50 151 60 141)(101 136 111 126)(102 135 112 125)(103 134 113 124)(104 133 114 123)(105 132 115 122)(106 131 116 121)(107 130 117 140)(108 129 118 139)(109 128 119 138)(110 127 120 137)

G:=sub<Sym(160)| (1,52,136,21)(2,53,137,22)(3,54,138,23)(4,55,139,24)(5,56,140,25)(6,57,121,26)(7,58,122,27)(8,59,123,28)(9,60,124,29)(10,41,125,30)(11,42,126,31)(12,43,127,32)(13,44,128,33)(14,45,129,34)(15,46,130,35)(16,47,131,36)(17,48,132,37)(18,49,133,38)(19,50,134,39)(20,51,135,40)(61,90,158,120)(62,91,159,101)(63,92,160,102)(64,93,141,103)(65,94,142,104)(66,95,143,105)(67,96,144,106)(68,97,145,107)(69,98,146,108)(70,99,147,109)(71,100,148,110)(72,81,149,111)(73,82,150,112)(74,83,151,113)(75,84,152,114)(76,85,153,115)(77,86,154,116)(78,87,155,117)(79,88,156,118)(80,89,157,119), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,121)(48,122)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,131)(58,132)(59,133)(60,134)(61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(101,149)(102,150)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,11,91)(2,100,12,90)(3,99,13,89)(4,98,14,88)(5,97,15,87)(6,96,16,86)(7,95,17,85)(8,94,18,84)(9,93,19,83)(10,92,20,82)(21,72,31,62)(22,71,32,61)(23,70,33,80)(24,69,34,79)(25,68,35,78)(26,67,36,77)(27,66,37,76)(28,65,38,75)(29,64,39,74)(30,63,40,73)(41,160,51,150)(42,159,52,149)(43,158,53,148)(44,157,54,147)(45,156,55,146)(46,155,56,145)(47,154,57,144)(48,153,58,143)(49,152,59,142)(50,151,60,141)(101,136,111,126)(102,135,112,125)(103,134,113,124)(104,133,114,123)(105,132,115,122)(106,131,116,121)(107,130,117,140)(108,129,118,139)(109,128,119,138)(110,127,120,137)>;

G:=Group( (1,52,136,21)(2,53,137,22)(3,54,138,23)(4,55,139,24)(5,56,140,25)(6,57,121,26)(7,58,122,27)(8,59,123,28)(9,60,124,29)(10,41,125,30)(11,42,126,31)(12,43,127,32)(13,44,128,33)(14,45,129,34)(15,46,130,35)(16,47,131,36)(17,48,132,37)(18,49,133,38)(19,50,134,39)(20,51,135,40)(61,90,158,120)(62,91,159,101)(63,92,160,102)(64,93,141,103)(65,94,142,104)(66,95,143,105)(67,96,144,106)(68,97,145,107)(69,98,146,108)(70,99,147,109)(71,100,148,110)(72,81,149,111)(73,82,150,112)(74,83,151,113)(75,84,152,114)(76,85,153,115)(77,86,154,116)(78,87,155,117)(79,88,156,118)(80,89,157,119), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,121)(48,122)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,131)(58,132)(59,133)(60,134)(61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(101,149)(102,150)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,11,91)(2,100,12,90)(3,99,13,89)(4,98,14,88)(5,97,15,87)(6,96,16,86)(7,95,17,85)(8,94,18,84)(9,93,19,83)(10,92,20,82)(21,72,31,62)(22,71,32,61)(23,70,33,80)(24,69,34,79)(25,68,35,78)(26,67,36,77)(27,66,37,76)(28,65,38,75)(29,64,39,74)(30,63,40,73)(41,160,51,150)(42,159,52,149)(43,158,53,148)(44,157,54,147)(45,156,55,146)(46,155,56,145)(47,154,57,144)(48,153,58,143)(49,152,59,142)(50,151,60,141)(101,136,111,126)(102,135,112,125)(103,134,113,124)(104,133,114,123)(105,132,115,122)(106,131,116,121)(107,130,117,140)(108,129,118,139)(109,128,119,138)(110,127,120,137) );

G=PermutationGroup([(1,52,136,21),(2,53,137,22),(3,54,138,23),(4,55,139,24),(5,56,140,25),(6,57,121,26),(7,58,122,27),(8,59,123,28),(9,60,124,29),(10,41,125,30),(11,42,126,31),(12,43,127,32),(13,44,128,33),(14,45,129,34),(15,46,130,35),(16,47,131,36),(17,48,132,37),(18,49,133,38),(19,50,134,39),(20,51,135,40),(61,90,158,120),(62,91,159,101),(63,92,160,102),(64,93,141,103),(65,94,142,104),(66,95,143,105),(67,96,144,106),(68,97,145,107),(69,98,146,108),(70,99,147,109),(71,100,148,110),(72,81,149,111),(73,82,150,112),(74,83,151,113),(75,84,152,114),(76,85,153,115),(77,86,154,116),(78,87,155,117),(79,88,156,118),(80,89,157,119)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,135),(42,136),(43,137),(44,138),(45,139),(46,140),(47,121),(48,122),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,129),(56,130),(57,131),(58,132),(59,133),(60,134),(61,100),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,97),(79,98),(80,99),(101,149),(102,150),(103,151),(104,152),(105,153),(106,154),(107,155),(108,156),(109,157),(110,158),(111,159),(112,160),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,81,11,91),(2,100,12,90),(3,99,13,89),(4,98,14,88),(5,97,15,87),(6,96,16,86),(7,95,17,85),(8,94,18,84),(9,93,19,83),(10,92,20,82),(21,72,31,62),(22,71,32,61),(23,70,33,80),(24,69,34,79),(25,68,35,78),(26,67,36,77),(27,66,37,76),(28,65,38,75),(29,64,39,74),(30,63,40,73),(41,160,51,150),(42,159,52,149),(43,158,53,148),(44,157,54,147),(45,156,55,146),(46,155,56,145),(47,154,57,144),(48,153,58,143),(49,152,59,142),(50,151,60,141),(101,136,111,126),(102,135,112,125),(103,134,113,124),(104,133,114,123),(105,132,115,122),(106,131,116,121),(107,130,117,140),(108,129,118,139),(109,128,119,138),(110,127,120,137)])

Matrix representation G ⊆ GL4(𝔽41) generated by

40000
04000
00409
00181
,
1000
0100
00409
0001
,
91100
301400
0010
0001
,
12400
174000
00400
00040
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,18,0,0,9,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,9,1],[9,30,0,0,11,14,0,0,0,0,1,0,0,0,0,1],[1,17,0,0,24,40,0,0,0,0,40,0,0,0,0,40] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L···4Q5A5B10A···10F10G···10N20A···20H20I···20X
order12222222444444444444···45510···1010···1020···2020···20
size1111222222224441010101020···20222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type++++++++++-++++++--+-
imageC1C2C2C2C2C2C2C2C2D4Q8D5D10D10D10D10D10Dic102- (1+4)D4×D5D4.10D10
kernelD4×Dic10C4×Dic10C202Q8Dic5.14D4C20⋊Q8C20.48D4D4×Dic5D4×C20C22×Dic10Dic10C5×D4C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C4C2
# reps1114222124422424216144

In GAP, Magma, Sage, TeX

D_4\times Dic_{10}
% in TeX

G:=Group("D4xDic10");
// GroupNames label

G:=SmallGroup(320,1209);
// by ID

G=gap.SmallGroup(320,1209);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,675,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽