Extensions 1→N→G→Q→1 with N=D4×Dic5 and Q=C2

Direct product G=N×Q with N=D4×Dic5 and Q=C2
dρLabelID
C2×D4×Dic5160C2xD4xDic5320,1467

Semidirect products G=N:Q with N=D4×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×Dic5)⋊1C2 = Dic54D8φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):1C2320,383
(D4×Dic5)⋊2C2 = D4⋊D56C4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):2C2320,412
(D4×Dic5)⋊3C2 = D8×Dic5φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):3C2320,776
(D4×Dic5)⋊4C2 = Dic5⋊D8φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):4C2320,777
(D4×Dic5)⋊5C2 = D8⋊Dic5φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):5C2320,779
(D4×Dic5)⋊6C2 = (C2×D8).D5φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):6C2320,780
(D4×Dic5)⋊7C2 = (C5×D4).D4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):7C2320,792
(D4×Dic5)⋊8C2 = C4211D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):8C2320,1217
(D4×Dic5)⋊9C2 = C42.108D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):9C2320,1218
(D4×Dic5)⋊10C2 = C24.56D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):10C2320,1258
(D4×Dic5)⋊11C2 = C24.32D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):11C2320,1259
(D4×Dic5)⋊12C2 = C24.33D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):12C2320,1263
(D4×Dic5)⋊13C2 = C24.35D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):13C2320,1265
(D4×Dic5)⋊14C2 = C20⋊(C4○D4)φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):14C2320,1268
(D4×Dic5)⋊15C2 = Dic1019D4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):15C2320,1270
(D4×Dic5)⋊16C2 = C4⋊C4.178D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):16C2320,1272
(D4×Dic5)⋊17C2 = C10.342+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):17C2320,1273
(D4×Dic5)⋊18C2 = C10.352+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):18C2320,1274
(D4×Dic5)⋊19C2 = C10.362+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):19C2320,1275
(D4×Dic5)⋊20C2 = C4⋊C421D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):20C2320,1278
(D4×Dic5)⋊21C2 = C10.732- 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):21C2320,1283
(D4×Dic5)⋊22C2 = C10.432+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):22C2320,1286
(D4×Dic5)⋊23C2 = C10.452+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):23C2320,1288
(D4×Dic5)⋊24C2 = C10.462+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):24C2320,1289
(D4×Dic5)⋊25C2 = C10.1152+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):25C2320,1290
(D4×Dic5)⋊26C2 = C10.472+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):26C2320,1291
(D4×Dic5)⋊27C2 = C4⋊C4.197D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):27C2320,1321
(D4×Dic5)⋊28C2 = C10.1222+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):28C2320,1330
(D4×Dic5)⋊29C2 = C10.852- 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):29C2320,1337
(D4×Dic5)⋊30C2 = C42.234D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):30C2320,1352
(D4×Dic5)⋊31C2 = C42.143D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):31C2320,1353
(D4×Dic5)⋊32C2 = C42.144D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):32C2320,1354
(D4×Dic5)⋊33C2 = C42.166D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):33C2320,1385
(D4×Dic5)⋊34C2 = C42.238D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):34C2320,1388
(D4×Dic5)⋊35C2 = Dic1011D4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):35C2320,1390
(D4×Dic5)⋊36C2 = C42.168D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):36C2320,1391
(D4×Dic5)⋊37C2 = C24.38D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):37C2320,1470
(D4×Dic5)⋊38C2 = D4×C5⋊D4φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):38C2320,1473
(D4×Dic5)⋊39C2 = C24.42D10φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):39C2320,1478
(D4×Dic5)⋊40C2 = C10.1042- 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):40C2320,1496
(D4×Dic5)⋊41C2 = C10.1062- 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5):41C2320,1499
(D4×Dic5)⋊42C2 = C10.1452+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic580(D4xDic5):42C2320,1501
(D4×Dic5)⋊43C2 = C4×D42D5φ: trivial image160(D4xDic5):43C2320,1208
(D4×Dic5)⋊44C2 = C4×D4×D5φ: trivial image80(D4xDic5):44C2320,1216
(D4×Dic5)⋊45C2 = C4○D4×Dic5φ: trivial image160(D4xDic5):45C2320,1498

Non-split extensions G=N.Q with N=D4×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×Dic5).1C2 = D4.D55C4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).1C2320,384
(D4×Dic5).2C2 = Dic56SD16φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).2C2320,385
(D4×Dic5).3C2 = Dic5.14D8φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).3C2320,386
(D4×Dic5).4C2 = D4⋊Dic10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).4C2320,388
(D4×Dic5).5C2 = D4.Dic10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).5C2320,390
(D4×Dic5).6C2 = D4.2Dic10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).6C2320,393
(D4×Dic5).7C2 = SD16×Dic5φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).7C2320,788
(D4×Dic5).8C2 = Dic53SD16φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).8C2320,789
(D4×Dic5).9C2 = SD16⋊Dic5φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).9C2320,791
(D4×Dic5).10C2 = C5⋊C87D4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).10C2320,1111
(D4×Dic5).11C2 = D4×Dic10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).11C2320,1209
(D4×Dic5).12C2 = D45Dic10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).12C2320,1211
(D4×Dic5).13C2 = D46Dic10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).13C2320,1215
(D4×Dic5).14C2 = C10.802- 1+4φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).14C2320,1322
(D4×Dic5).15C2 = C42.139D10φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).15C2320,1343
(D4×Dic5).16C2 = Dic5.23D8φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).16C2320,262
(D4×Dic5).17C2 = D4×C5⋊C8φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).17C2320,1110
(D4×Dic5).18C2 = C202M4(2)φ: C2/C1C2 ⊆ Out D4×Dic5160(D4xDic5).18C2320,1112

׿
×
𝔽