extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×Dic5)⋊1C2 = Dic5⋊4D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):1C2 | 320,383 |
(D4×Dic5)⋊2C2 = D4⋊D5⋊6C4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):2C2 | 320,412 |
(D4×Dic5)⋊3C2 = D8×Dic5 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):3C2 | 320,776 |
(D4×Dic5)⋊4C2 = Dic5⋊D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):4C2 | 320,777 |
(D4×Dic5)⋊5C2 = D8⋊Dic5 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):5C2 | 320,779 |
(D4×Dic5)⋊6C2 = (C2×D8).D5 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):6C2 | 320,780 |
(D4×Dic5)⋊7C2 = (C5×D4).D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):7C2 | 320,792 |
(D4×Dic5)⋊8C2 = C42⋊11D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):8C2 | 320,1217 |
(D4×Dic5)⋊9C2 = C42.108D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):9C2 | 320,1218 |
(D4×Dic5)⋊10C2 = C24.56D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):10C2 | 320,1258 |
(D4×Dic5)⋊11C2 = C24.32D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):11C2 | 320,1259 |
(D4×Dic5)⋊12C2 = C24.33D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):12C2 | 320,1263 |
(D4×Dic5)⋊13C2 = C24.35D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):13C2 | 320,1265 |
(D4×Dic5)⋊14C2 = C20⋊(C4○D4) | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):14C2 | 320,1268 |
(D4×Dic5)⋊15C2 = Dic10⋊19D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):15C2 | 320,1270 |
(D4×Dic5)⋊16C2 = C4⋊C4.178D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):16C2 | 320,1272 |
(D4×Dic5)⋊17C2 = C10.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):17C2 | 320,1273 |
(D4×Dic5)⋊18C2 = C10.352+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):18C2 | 320,1274 |
(D4×Dic5)⋊19C2 = C10.362+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):19C2 | 320,1275 |
(D4×Dic5)⋊20C2 = C4⋊C4⋊21D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):20C2 | 320,1278 |
(D4×Dic5)⋊21C2 = C10.732- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):21C2 | 320,1283 |
(D4×Dic5)⋊22C2 = C10.432+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):22C2 | 320,1286 |
(D4×Dic5)⋊23C2 = C10.452+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):23C2 | 320,1288 |
(D4×Dic5)⋊24C2 = C10.462+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):24C2 | 320,1289 |
(D4×Dic5)⋊25C2 = C10.1152+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):25C2 | 320,1290 |
(D4×Dic5)⋊26C2 = C10.472+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):26C2 | 320,1291 |
(D4×Dic5)⋊27C2 = C4⋊C4.197D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):27C2 | 320,1321 |
(D4×Dic5)⋊28C2 = C10.1222+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):28C2 | 320,1330 |
(D4×Dic5)⋊29C2 = C10.852- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):29C2 | 320,1337 |
(D4×Dic5)⋊30C2 = C42.234D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):30C2 | 320,1352 |
(D4×Dic5)⋊31C2 = C42.143D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):31C2 | 320,1353 |
(D4×Dic5)⋊32C2 = C42.144D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):32C2 | 320,1354 |
(D4×Dic5)⋊33C2 = C42.166D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):33C2 | 320,1385 |
(D4×Dic5)⋊34C2 = C42.238D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):34C2 | 320,1388 |
(D4×Dic5)⋊35C2 = Dic10⋊11D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):35C2 | 320,1390 |
(D4×Dic5)⋊36C2 = C42.168D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):36C2 | 320,1391 |
(D4×Dic5)⋊37C2 = C24.38D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):37C2 | 320,1470 |
(D4×Dic5)⋊38C2 = D4×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):38C2 | 320,1473 |
(D4×Dic5)⋊39C2 = C24.42D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):39C2 | 320,1478 |
(D4×Dic5)⋊40C2 = C10.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):40C2 | 320,1496 |
(D4×Dic5)⋊41C2 = C10.1062- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5):41C2 | 320,1499 |
(D4×Dic5)⋊42C2 = C10.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 80 | | (D4xDic5):42C2 | 320,1501 |
(D4×Dic5)⋊43C2 = C4×D4⋊2D5 | φ: trivial image | 160 | | (D4xDic5):43C2 | 320,1208 |
(D4×Dic5)⋊44C2 = C4×D4×D5 | φ: trivial image | 80 | | (D4xDic5):44C2 | 320,1216 |
(D4×Dic5)⋊45C2 = C4○D4×Dic5 | φ: trivial image | 160 | | (D4xDic5):45C2 | 320,1498 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×Dic5).1C2 = D4.D5⋊5C4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).1C2 | 320,384 |
(D4×Dic5).2C2 = Dic5⋊6SD16 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).2C2 | 320,385 |
(D4×Dic5).3C2 = Dic5.14D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).3C2 | 320,386 |
(D4×Dic5).4C2 = D4⋊Dic10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).4C2 | 320,388 |
(D4×Dic5).5C2 = D4.Dic10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).5C2 | 320,390 |
(D4×Dic5).6C2 = D4.2Dic10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).6C2 | 320,393 |
(D4×Dic5).7C2 = SD16×Dic5 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).7C2 | 320,788 |
(D4×Dic5).8C2 = Dic5⋊3SD16 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).8C2 | 320,789 |
(D4×Dic5).9C2 = SD16⋊Dic5 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).9C2 | 320,791 |
(D4×Dic5).10C2 = C5⋊C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).10C2 | 320,1111 |
(D4×Dic5).11C2 = D4×Dic10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).11C2 | 320,1209 |
(D4×Dic5).12C2 = D4⋊5Dic10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).12C2 | 320,1211 |
(D4×Dic5).13C2 = D4⋊6Dic10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).13C2 | 320,1215 |
(D4×Dic5).14C2 = C10.802- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).14C2 | 320,1322 |
(D4×Dic5).15C2 = C42.139D10 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).15C2 | 320,1343 |
(D4×Dic5).16C2 = Dic5.23D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).16C2 | 320,262 |
(D4×Dic5).17C2 = D4×C5⋊C8 | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).17C2 | 320,1110 |
(D4×Dic5).18C2 = C20⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out D4×Dic5 | 160 | | (D4xDic5).18C2 | 320,1112 |