Extensions 1→N→G→Q→1 with N=C2×C5⋊Q16 and Q=C2

Direct product G=N×Q with N=C2×C5⋊Q16 and Q=C2
dρLabelID
C22×C5⋊Q16320C2^2xC5:Q16320,1481

Semidirect products G=N:Q with N=C2×C5⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C5⋊Q16)⋊1C2 = D20.7D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q161608-(C2xC5:Q16):1C2320,382
(C2×C5⋊Q16)⋊2C2 = Dic10.11D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):2C2320,425
(C2×C5⋊Q16)⋊3C2 = D104Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):3C2320,435
(C2×C5⋊Q16)⋊4C2 = Q8.D20φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):4C2320,437
(C2×C5⋊Q16)⋊5C2 = D10⋊Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):5C2320,440
(C2×C5⋊Q16)⋊6C2 = C52C8.D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):6C2320,443
(C2×C5⋊Q16)⋊7C2 = Q8.1D20φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):7C2320,655
(C2×C5⋊Q16)⋊8C2 = D20.37D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):8C2320,674
(C2×C5⋊Q16)⋊9C2 = Dic10.37D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):9C2320,677
(C2×C5⋊Q16)⋊10C2 = (C2×C10)⋊Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):10C2320,678
(C2×C5⋊Q16)⋊11C2 = C5⋊(C8.D4)φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):11C2320,679
(C2×C5⋊Q16)⋊12C2 = C42.61D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):12C2320,681
(C2×C5⋊Q16)⋊13C2 = C42.214D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):13C2320,686
(C2×C5⋊Q16)⋊14C2 = C42.65D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):14C2320,687
(C2×C5⋊Q16)⋊15C2 = C42.80D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):15C2320,713
(C2×C5⋊Q16)⋊16C2 = (C5×Q8).D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):16C2320,793
(C2×C5⋊Q16)⋊17C2 = C40.31D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):17C2320,794
(C2×C5⋊Q16)⋊18C2 = C40.43D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):18C2320,795
(C2×C5⋊Q16)⋊19C2 = Dic10.16D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):19C2320,800
(C2×C5⋊Q16)⋊20C2 = D105Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):20C2320,813
(C2×C5⋊Q16)⋊21C2 = C40.37D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):21C2320,817
(C2×C5⋊Q16)⋊22C2 = M4(2).16D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q161608-(C2xC5:Q16):22C2320,831
(C2×C5⋊Q16)⋊23C2 = (C2×C10)⋊8Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):23C2320,855
(C2×C5⋊Q16)⋊24C2 = (C5×D4).32D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):24C2320,866
(C2×C5⋊Q16)⋊25C2 = C2×SD16⋊D5φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):25C2320,1432
(C2×C5⋊Q16)⋊26C2 = C2×SD163D5φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):26C2320,1433
(C2×C5⋊Q16)⋊27C2 = C2×D5×Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):27C2320,1435
(C2×C5⋊Q16)⋊28C2 = C2×Q16⋊D5φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):28C2320,1436
(C2×C5⋊Q16)⋊29C2 = D20.44D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q161608-(C2xC5:Q16):29C2320,1451
(C2×C5⋊Q16)⋊30C2 = C2×C20.C23φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):30C2320,1480
(C2×C5⋊Q16)⋊31C2 = C2×D4.9D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q16160(C2xC5:Q16):31C2320,1495
(C2×C5⋊Q16)⋊32C2 = D20.35C23φ: C2/C1C2 ⊆ Out C2×C5⋊Q161608-(C2xC5:Q16):32C2320,1510
(C2×C5⋊Q16)⋊33C2 = C2×D4.8D10φ: trivial image160(C2xC5:Q16):33C2320,1493

Non-split extensions G=N.Q with N=C2×C5⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C5⋊Q16).1C2 = C5⋊Q165C4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).1C2320,416
(C2×C5⋊Q16).2C2 = Dic54Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).2C2320,417
(C2×C5⋊Q16).3C2 = Dic5⋊Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).3C2320,420
(C2×C5⋊Q16).4C2 = C42.59D10φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).4C2320,657
(C2×C5⋊Q16).5C2 = C207Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).5C2320,658
(C2×C5⋊Q16).6C2 = C20⋊Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).6C2320,717
(C2×C5⋊Q16).7C2 = C203Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).7C2320,719
(C2×C5⋊Q16).8C2 = C40.26D4φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).8C2320,808
(C2×C5⋊Q16).9C2 = Dic53Q16φ: C2/C1C2 ⊆ Out C2×C5⋊Q16320(C2xC5:Q16).9C2320,809
(C2×C5⋊Q16).10C2 = C4×C5⋊Q16φ: trivial image320(C2xC5:Q16).10C2320,656

׿
×
𝔽