Copied to
clipboard

G = Dic10.11D4order 320 = 26·5

11st non-split extension by Dic10 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic10.11D4, C4.91(D4×D5), Q8⋊C49D5, C4⋊C4.146D10, C4.6(C4○D20), C20.115(C2×D4), (C2×C8).120D10, (C2×Q8).13D10, C52(Q8.D4), Dic53Q85C2, D206C4.2C2, C10.45(C4○D8), C20.17(C4○D4), C20.8Q813C2, (C2×Dic5).36D4, C22.192(D4×D5), C10.22(C4⋊D4), (C2×C20).238C23, (C2×C40).131C22, C20.23D4.5C2, (C2×D20).62C22, (Q8×C10).21C22, C2.25(D10⋊D4), C2.11(Q16⋊D5), C10.56(C8.C22), (C4×Dic5).28C22, C2.14(SD163D5), (C2×Dic10).71C22, (C2×C5⋊Q16)⋊2C2, (C5×Q8⋊C4)⋊9C2, (C2×C40⋊C2).3C2, (C2×C10).251(C2×D4), (C5×C4⋊C4).39C22, (C2×C52C8).33C22, (C2×C4).345(C22×D5), SmallGroup(320,425)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Dic10.11D4
C1C5C10C20C2×C20C4×Dic5Dic53Q8 — Dic10.11D4
C5C10C2×C20 — Dic10.11D4
C1C22C2×C4Q8⋊C4

Generators and relations for Dic10.11D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=dad=a-1, cac-1=a9, bc=cb, dbd=a15b, dcd=a10c-1 >

Subgroups: 486 in 112 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×Q8, C4.4D4, C2×SD16, C2×Q16, C52C8, C40, Dic10, Dic10, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, Q8.D4, C40⋊C2, C2×C52C8, C4×Dic5, C4×Dic5, C10.D4, D10⋊C4, C5⋊Q16, C5×C4⋊C4, C2×C40, C2×Dic10, C2×D20, Q8×C10, D206C4, C20.8Q8, C5×Q8⋊C4, Dic53Q8, C2×C40⋊C2, C2×C5⋊Q16, C20.23D4, Dic10.11D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8.C22, C22×D5, Q8.D4, C4○D20, D4×D5, D10⋊D4, SD163D5, Q16⋊D5, Dic10.11D4

Smallest permutation representation of Dic10.11D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 28 11 38)(2 27 12 37)(3 26 13 36)(4 25 14 35)(5 24 15 34)(6 23 16 33)(7 22 17 32)(8 21 18 31)(9 40 19 30)(10 39 20 29)(41 67 51 77)(42 66 52 76)(43 65 53 75)(44 64 54 74)(45 63 55 73)(46 62 56 72)(47 61 57 71)(48 80 58 70)(49 79 59 69)(50 78 60 68)(81 138 91 128)(82 137 92 127)(83 136 93 126)(84 135 94 125)(85 134 95 124)(86 133 96 123)(87 132 97 122)(88 131 98 121)(89 130 99 140)(90 129 100 139)(101 151 111 141)(102 150 112 160)(103 149 113 159)(104 148 114 158)(105 147 115 157)(106 146 116 156)(107 145 117 155)(108 144 118 154)(109 143 119 153)(110 142 120 152)
(1 96 61 147)(2 85 62 156)(3 94 63 145)(4 83 64 154)(5 92 65 143)(6 81 66 152)(7 90 67 141)(8 99 68 150)(9 88 69 159)(10 97 70 148)(11 86 71 157)(12 95 72 146)(13 84 73 155)(14 93 74 144)(15 82 75 153)(16 91 76 142)(17 100 77 151)(18 89 78 160)(19 98 79 149)(20 87 80 158)(21 140 50 112)(22 129 51 101)(23 138 52 110)(24 127 53 119)(25 136 54 108)(26 125 55 117)(27 134 56 106)(28 123 57 115)(29 132 58 104)(30 121 59 113)(31 130 60 102)(32 139 41 111)(33 128 42 120)(34 137 43 109)(35 126 44 118)(36 135 45 107)(37 124 46 116)(38 133 47 105)(39 122 48 114)(40 131 49 103)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(59 60)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(81 152)(82 151)(83 150)(84 149)(85 148)(86 147)(87 146)(88 145)(89 144)(90 143)(91 142)(92 141)(93 160)(94 159)(95 158)(96 157)(97 156)(98 155)(99 154)(100 153)(101 132)(102 131)(103 130)(104 129)(105 128)(106 127)(107 126)(108 125)(109 124)(110 123)(111 122)(112 121)(113 140)(114 139)(115 138)(116 137)(117 136)(118 135)(119 134)(120 133)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,28,11,38)(2,27,12,37)(3,26,13,36)(4,25,14,35)(5,24,15,34)(6,23,16,33)(7,22,17,32)(8,21,18,31)(9,40,19,30)(10,39,20,29)(41,67,51,77)(42,66,52,76)(43,65,53,75)(44,64,54,74)(45,63,55,73)(46,62,56,72)(47,61,57,71)(48,80,58,70)(49,79,59,69)(50,78,60,68)(81,138,91,128)(82,137,92,127)(83,136,93,126)(84,135,94,125)(85,134,95,124)(86,133,96,123)(87,132,97,122)(88,131,98,121)(89,130,99,140)(90,129,100,139)(101,151,111,141)(102,150,112,160)(103,149,113,159)(104,148,114,158)(105,147,115,157)(106,146,116,156)(107,145,117,155)(108,144,118,154)(109,143,119,153)(110,142,120,152), (1,96,61,147)(2,85,62,156)(3,94,63,145)(4,83,64,154)(5,92,65,143)(6,81,66,152)(7,90,67,141)(8,99,68,150)(9,88,69,159)(10,97,70,148)(11,86,71,157)(12,95,72,146)(13,84,73,155)(14,93,74,144)(15,82,75,153)(16,91,76,142)(17,100,77,151)(18,89,78,160)(19,98,79,149)(20,87,80,158)(21,140,50,112)(22,129,51,101)(23,138,52,110)(24,127,53,119)(25,136,54,108)(26,125,55,117)(27,134,56,106)(28,123,57,115)(29,132,58,104)(30,121,59,113)(31,130,60,102)(32,139,41,111)(33,128,42,120)(34,137,43,109)(35,126,44,118)(36,135,45,107)(37,124,46,116)(38,133,47,105)(39,122,48,114)(40,131,49,103), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,152)(82,151)(83,150)(84,149)(85,148)(86,147)(87,146)(88,145)(89,144)(90,143)(91,142)(92,141)(93,160)(94,159)(95,158)(96,157)(97,156)(98,155)(99,154)(100,153)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,126)(108,125)(109,124)(110,123)(111,122)(112,121)(113,140)(114,139)(115,138)(116,137)(117,136)(118,135)(119,134)(120,133)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,28,11,38)(2,27,12,37)(3,26,13,36)(4,25,14,35)(5,24,15,34)(6,23,16,33)(7,22,17,32)(8,21,18,31)(9,40,19,30)(10,39,20,29)(41,67,51,77)(42,66,52,76)(43,65,53,75)(44,64,54,74)(45,63,55,73)(46,62,56,72)(47,61,57,71)(48,80,58,70)(49,79,59,69)(50,78,60,68)(81,138,91,128)(82,137,92,127)(83,136,93,126)(84,135,94,125)(85,134,95,124)(86,133,96,123)(87,132,97,122)(88,131,98,121)(89,130,99,140)(90,129,100,139)(101,151,111,141)(102,150,112,160)(103,149,113,159)(104,148,114,158)(105,147,115,157)(106,146,116,156)(107,145,117,155)(108,144,118,154)(109,143,119,153)(110,142,120,152), (1,96,61,147)(2,85,62,156)(3,94,63,145)(4,83,64,154)(5,92,65,143)(6,81,66,152)(7,90,67,141)(8,99,68,150)(9,88,69,159)(10,97,70,148)(11,86,71,157)(12,95,72,146)(13,84,73,155)(14,93,74,144)(15,82,75,153)(16,91,76,142)(17,100,77,151)(18,89,78,160)(19,98,79,149)(20,87,80,158)(21,140,50,112)(22,129,51,101)(23,138,52,110)(24,127,53,119)(25,136,54,108)(26,125,55,117)(27,134,56,106)(28,123,57,115)(29,132,58,104)(30,121,59,113)(31,130,60,102)(32,139,41,111)(33,128,42,120)(34,137,43,109)(35,126,44,118)(36,135,45,107)(37,124,46,116)(38,133,47,105)(39,122,48,114)(40,131,49,103), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,152)(82,151)(83,150)(84,149)(85,148)(86,147)(87,146)(88,145)(89,144)(90,143)(91,142)(92,141)(93,160)(94,159)(95,158)(96,157)(97,156)(98,155)(99,154)(100,153)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,126)(108,125)(109,124)(110,123)(111,122)(112,121)(113,140)(114,139)(115,138)(116,137)(117,136)(118,135)(119,134)(120,133) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,28,11,38),(2,27,12,37),(3,26,13,36),(4,25,14,35),(5,24,15,34),(6,23,16,33),(7,22,17,32),(8,21,18,31),(9,40,19,30),(10,39,20,29),(41,67,51,77),(42,66,52,76),(43,65,53,75),(44,64,54,74),(45,63,55,73),(46,62,56,72),(47,61,57,71),(48,80,58,70),(49,79,59,69),(50,78,60,68),(81,138,91,128),(82,137,92,127),(83,136,93,126),(84,135,94,125),(85,134,95,124),(86,133,96,123),(87,132,97,122),(88,131,98,121),(89,130,99,140),(90,129,100,139),(101,151,111,141),(102,150,112,160),(103,149,113,159),(104,148,114,158),(105,147,115,157),(106,146,116,156),(107,145,117,155),(108,144,118,154),(109,143,119,153),(110,142,120,152)], [(1,96,61,147),(2,85,62,156),(3,94,63,145),(4,83,64,154),(5,92,65,143),(6,81,66,152),(7,90,67,141),(8,99,68,150),(9,88,69,159),(10,97,70,148),(11,86,71,157),(12,95,72,146),(13,84,73,155),(14,93,74,144),(15,82,75,153),(16,91,76,142),(17,100,77,151),(18,89,78,160),(19,98,79,149),(20,87,80,158),(21,140,50,112),(22,129,51,101),(23,138,52,110),(24,127,53,119),(25,136,54,108),(26,125,55,117),(27,134,56,106),(28,123,57,115),(29,132,58,104),(30,121,59,113),(31,130,60,102),(32,139,41,111),(33,128,42,120),(34,137,43,109),(35,126,44,118),(36,135,45,107),(37,124,46,116),(38,133,47,105),(39,122,48,114),(40,131,49,103)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(59,60),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(81,152),(82,151),(83,150),(84,149),(85,148),(86,147),(87,146),(88,145),(89,144),(90,143),(91,142),(92,141),(93,160),(94,159),(95,158),(96,157),(97,156),(98,155),(99,154),(100,153),(101,132),(102,131),(103,130),(104,129),(105,128),(106,127),(107,126),(108,125),(109,124),(110,123),(111,122),(112,121),(113,140),(114,139),(115,138),(116,137),(117,136),(118,135),(119,134),(120,133)]])

47 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222444444444455888810···102020202020···2040···40
size111140224481010202020224420202···244448···84···4

47 irreducible representations

dim1111111122222222244444
type++++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C4○D8C4○D20C8.C22D4×D5D4×D5SD163D5Q16⋊D5
kernelDic10.11D4D206C4C20.8Q8C5×Q8⋊C4Dic53Q8C2×C40⋊C2C2×C5⋊Q16C20.23D4Dic10C2×Dic5Q8⋊C4C20C4⋊C4C2×C8C2×Q8C10C4C10C4C22C2C2
# reps1111111122222224812244

Matrix representation of Dic10.11D4 in GL6(𝔽41)

010000
4060000
0040000
0004000
0000402
0000401
,
100000
6400000
0092300
0093200
0000011
0000260
,
100000
6400000
0040200
0040100
000090
000009
,
100000
6400000
001000
0014000
000010
0000140

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,6,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,40,0,0,0,0,2,1],[1,6,0,0,0,0,0,40,0,0,0,0,0,0,9,9,0,0,0,0,23,32,0,0,0,0,0,0,0,26,0,0,0,0,11,0],[1,6,0,0,0,0,0,40,0,0,0,0,0,0,40,40,0,0,0,0,2,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,6,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,0,40] >;

Dic10.11D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}._{11}D_4
% in TeX

G:=Group("Dic10.11D4");
// GroupNames label

G:=SmallGroup(320,425);
// by ID

G=gap.SmallGroup(320,425);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,344,1094,135,184,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^9,b*c=c*b,d*b*d=a^15*b,d*c*d=a^10*c^-1>;
// generators/relations

׿
×
𝔽