Copied to
clipboard

G = (C2×C10)⋊8Q16order 320 = 26·5

2nd semidirect product of C2×C10 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C10)⋊8Q16, (C5×Q8).31D4, (C2×C20).304D4, C20.211(C2×D4), C10.47(C2×Q16), C55(C22⋊Q16), C10.75C22≀C2, (C22×Q8).4D5, Q8⋊Dic539C2, (C2×Q8).169D10, Q8.13(C5⋊D4), C223(C5⋊Q16), (C2×C20).478C23, (C22×C4).157D10, (C22×C10).201D4, C2.9(C242D5), C23.89(C5⋊D4), C20.48D4.14C2, C20.55D4.10C2, C4⋊Dic5.188C22, (Q8×C10).204C22, C2.23(C20.C23), C10.103(C8.C22), (C22×C20).204C22, (C2×Dic10).142C22, (Q8×C2×C10).4C2, C4.61(C2×C5⋊D4), (C2×C5⋊Q16)⋊23C2, C2.17(C2×C5⋊Q16), (C2×C10).561(C2×D4), (C2×C4).87(C5⋊D4), (C2×C4).563(C22×D5), C22.221(C2×C5⋊D4), (C2×C52C8).176C22, SmallGroup(320,855)

Series: Derived Chief Lower central Upper central

C1C2×C20 — (C2×C10)⋊8Q16
C1C5C10C20C2×C20C2×Dic10C20.48D4 — (C2×C10)⋊8Q16
C5C10C2×C20 — (C2×C10)⋊8Q16
C1C22C22×C4C22×Q8

Generators and relations for (C2×C10)⋊8Q16
 G = < a,b,c,d | a2=b10=c8=1, d2=c4, ab=ba, cac-1=ab5, ad=da, cbc-1=b-1, bd=db, dcd-1=c-1 >

Subgroups: 414 in 148 conjugacy classes, 51 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C52C8, Dic10, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×C10, C22⋊Q16, C2×C52C8, C10.D4, C4⋊Dic5, C5⋊Q16, C23.D5, C2×Dic10, C22×C20, C22×C20, Q8×C10, Q8×C10, C20.55D4, Q8⋊Dic5, C20.48D4, C2×C5⋊Q16, Q8×C2×C10, (C2×C10)⋊8Q16
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, D10, C22≀C2, C2×Q16, C8.C22, C5⋊D4, C22×D5, C22⋊Q16, C5⋊Q16, C2×C5⋊D4, C20.C23, C2×C5⋊Q16, C242D5, (C2×C10)⋊8Q16

Smallest permutation representation of (C2×C10)⋊8Q16
On 160 points
Generators in S160
(1 30)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 156)(12 157)(13 158)(14 159)(15 160)(16 151)(17 152)(18 153)(19 154)(20 155)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 81)(91 101)(92 102)(93 103)(94 104)(95 105)(96 106)(97 107)(98 108)(99 109)(100 110)(111 121)(112 122)(113 123)(114 124)(115 125)(116 126)(117 127)(118 128)(119 129)(120 130)(131 141)(132 142)(133 143)(134 144)(135 145)(136 146)(137 147)(138 148)(139 149)(140 150)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 160 40 145 30 20 50 140)(2 159 31 144 21 19 41 139)(3 158 32 143 22 18 42 138)(4 157 33 142 23 17 43 137)(5 156 34 141 24 16 44 136)(6 155 35 150 25 15 45 135)(7 154 36 149 26 14 46 134)(8 153 37 148 27 13 47 133)(9 152 38 147 28 12 48 132)(10 151 39 146 29 11 49 131)(51 119 82 99 61 124 71 104)(52 118 83 98 62 123 72 103)(53 117 84 97 63 122 73 102)(54 116 85 96 64 121 74 101)(55 115 86 95 65 130 75 110)(56 114 87 94 66 129 76 109)(57 113 88 93 67 128 77 108)(58 112 89 92 68 127 78 107)(59 111 90 91 69 126 79 106)(60 120 81 100 70 125 80 105)
(1 70 30 60)(2 61 21 51)(3 62 22 52)(4 63 23 53)(5 64 24 54)(6 65 25 55)(7 66 26 56)(8 67 27 57)(9 68 28 58)(10 69 29 59)(11 106 151 91)(12 107 152 92)(13 108 153 93)(14 109 154 94)(15 110 155 95)(16 101 156 96)(17 102 157 97)(18 103 158 98)(19 104 159 99)(20 105 160 100)(31 82 41 71)(32 83 42 72)(33 84 43 73)(34 85 44 74)(35 86 45 75)(36 87 46 76)(37 88 47 77)(38 89 48 78)(39 90 49 79)(40 81 50 80)(111 131 126 146)(112 132 127 147)(113 133 128 148)(114 134 129 149)(115 135 130 150)(116 136 121 141)(117 137 122 142)(118 138 123 143)(119 139 124 144)(120 140 125 145)

G:=sub<Sym(160)| (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,156)(12,157)(13,158)(14,159)(15,160)(16,151)(17,152)(18,153)(19,154)(20,155)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,81)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110)(111,121)(112,122)(113,123)(114,124)(115,125)(116,126)(117,127)(118,128)(119,129)(120,130)(131,141)(132,142)(133,143)(134,144)(135,145)(136,146)(137,147)(138,148)(139,149)(140,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,160,40,145,30,20,50,140)(2,159,31,144,21,19,41,139)(3,158,32,143,22,18,42,138)(4,157,33,142,23,17,43,137)(5,156,34,141,24,16,44,136)(6,155,35,150,25,15,45,135)(7,154,36,149,26,14,46,134)(8,153,37,148,27,13,47,133)(9,152,38,147,28,12,48,132)(10,151,39,146,29,11,49,131)(51,119,82,99,61,124,71,104)(52,118,83,98,62,123,72,103)(53,117,84,97,63,122,73,102)(54,116,85,96,64,121,74,101)(55,115,86,95,65,130,75,110)(56,114,87,94,66,129,76,109)(57,113,88,93,67,128,77,108)(58,112,89,92,68,127,78,107)(59,111,90,91,69,126,79,106)(60,120,81,100,70,125,80,105), (1,70,30,60)(2,61,21,51)(3,62,22,52)(4,63,23,53)(5,64,24,54)(6,65,25,55)(7,66,26,56)(8,67,27,57)(9,68,28,58)(10,69,29,59)(11,106,151,91)(12,107,152,92)(13,108,153,93)(14,109,154,94)(15,110,155,95)(16,101,156,96)(17,102,157,97)(18,103,158,98)(19,104,159,99)(20,105,160,100)(31,82,41,71)(32,83,42,72)(33,84,43,73)(34,85,44,74)(35,86,45,75)(36,87,46,76)(37,88,47,77)(38,89,48,78)(39,90,49,79)(40,81,50,80)(111,131,126,146)(112,132,127,147)(113,133,128,148)(114,134,129,149)(115,135,130,150)(116,136,121,141)(117,137,122,142)(118,138,123,143)(119,139,124,144)(120,140,125,145)>;

G:=Group( (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,156)(12,157)(13,158)(14,159)(15,160)(16,151)(17,152)(18,153)(19,154)(20,155)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,81)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110)(111,121)(112,122)(113,123)(114,124)(115,125)(116,126)(117,127)(118,128)(119,129)(120,130)(131,141)(132,142)(133,143)(134,144)(135,145)(136,146)(137,147)(138,148)(139,149)(140,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,160,40,145,30,20,50,140)(2,159,31,144,21,19,41,139)(3,158,32,143,22,18,42,138)(4,157,33,142,23,17,43,137)(5,156,34,141,24,16,44,136)(6,155,35,150,25,15,45,135)(7,154,36,149,26,14,46,134)(8,153,37,148,27,13,47,133)(9,152,38,147,28,12,48,132)(10,151,39,146,29,11,49,131)(51,119,82,99,61,124,71,104)(52,118,83,98,62,123,72,103)(53,117,84,97,63,122,73,102)(54,116,85,96,64,121,74,101)(55,115,86,95,65,130,75,110)(56,114,87,94,66,129,76,109)(57,113,88,93,67,128,77,108)(58,112,89,92,68,127,78,107)(59,111,90,91,69,126,79,106)(60,120,81,100,70,125,80,105), (1,70,30,60)(2,61,21,51)(3,62,22,52)(4,63,23,53)(5,64,24,54)(6,65,25,55)(7,66,26,56)(8,67,27,57)(9,68,28,58)(10,69,29,59)(11,106,151,91)(12,107,152,92)(13,108,153,93)(14,109,154,94)(15,110,155,95)(16,101,156,96)(17,102,157,97)(18,103,158,98)(19,104,159,99)(20,105,160,100)(31,82,41,71)(32,83,42,72)(33,84,43,73)(34,85,44,74)(35,86,45,75)(36,87,46,76)(37,88,47,77)(38,89,48,78)(39,90,49,79)(40,81,50,80)(111,131,126,146)(112,132,127,147)(113,133,128,148)(114,134,129,149)(115,135,130,150)(116,136,121,141)(117,137,122,142)(118,138,123,143)(119,139,124,144)(120,140,125,145) );

G=PermutationGroup([[(1,30),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,156),(12,157),(13,158),(14,159),(15,160),(16,151),(17,152),(18,153),(19,154),(20,155),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,81),(91,101),(92,102),(93,103),(94,104),(95,105),(96,106),(97,107),(98,108),(99,109),(100,110),(111,121),(112,122),(113,123),(114,124),(115,125),(116,126),(117,127),(118,128),(119,129),(120,130),(131,141),(132,142),(133,143),(134,144),(135,145),(136,146),(137,147),(138,148),(139,149),(140,150)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,160,40,145,30,20,50,140),(2,159,31,144,21,19,41,139),(3,158,32,143,22,18,42,138),(4,157,33,142,23,17,43,137),(5,156,34,141,24,16,44,136),(6,155,35,150,25,15,45,135),(7,154,36,149,26,14,46,134),(8,153,37,148,27,13,47,133),(9,152,38,147,28,12,48,132),(10,151,39,146,29,11,49,131),(51,119,82,99,61,124,71,104),(52,118,83,98,62,123,72,103),(53,117,84,97,63,122,73,102),(54,116,85,96,64,121,74,101),(55,115,86,95,65,130,75,110),(56,114,87,94,66,129,76,109),(57,113,88,93,67,128,77,108),(58,112,89,92,68,127,78,107),(59,111,90,91,69,126,79,106),(60,120,81,100,70,125,80,105)], [(1,70,30,60),(2,61,21,51),(3,62,22,52),(4,63,23,53),(5,64,24,54),(6,65,25,55),(7,66,26,56),(8,67,27,57),(9,68,28,58),(10,69,29,59),(11,106,151,91),(12,107,152,92),(13,108,153,93),(14,109,154,94),(15,110,155,95),(16,101,156,96),(17,102,157,97),(18,103,158,98),(19,104,159,99),(20,105,160,100),(31,82,41,71),(32,83,42,72),(33,84,43,73),(34,85,44,74),(35,86,45,75),(36,87,46,76),(37,88,47,77),(38,89,48,78),(39,90,49,79),(40,81,50,80),(111,131,126,146),(112,132,127,147),(113,133,128,148),(114,134,129,149),(115,135,130,150),(116,136,121,141),(117,137,122,142),(118,138,123,143),(119,139,124,144),(120,140,125,145)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C···4G4H4I5A5B8A8B8C8D10A···10N20A···20X
order122222444···44455888810···1020···20
size111122224···4404022202020202···24···4

59 irreducible representations

dim1111112222222222444
type++++++++++-++--
imageC1C2C2C2C2C2D4D4D4D5Q16D10D10C5⋊D4C5⋊D4C5⋊D4C8.C22C5⋊Q16C20.C23
kernel(C2×C10)⋊8Q16C20.55D4Q8⋊Dic5C20.48D4C2×C5⋊Q16Q8×C2×C10C2×C20C5×Q8C22×C10C22×Q8C2×C10C22×C4C2×Q8C2×C4Q8C23C10C22C2
# reps11212114124244164144

Matrix representation of (C2×C10)⋊8Q16 in GL4(𝔽41) generated by

1000
344000
00400
00040
,
31000
8400
0010
0001
,
343900
24700
001212
002912
,
1000
0100
001140
004030
G:=sub<GL(4,GF(41))| [1,34,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[31,8,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[34,24,0,0,39,7,0,0,0,0,12,29,0,0,12,12],[1,0,0,0,0,1,0,0,0,0,11,40,0,0,40,30] >;

(C2×C10)⋊8Q16 in GAP, Magma, Sage, TeX

(C_2\times C_{10})\rtimes_8Q_{16}
% in TeX

G:=Group("(C2xC10):8Q16");
// GroupNames label

G:=SmallGroup(320,855);
// by ID

G=gap.SmallGroup(320,855);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,184,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^8=1,d^2=c^4,a*b=b*a,c*a*c^-1=a*b^5,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽