Copied to
clipboard

G = M4(2).16D10order 320 = 26·5

16th non-split extension by M4(2) of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).16D10, C8.C22.D5, (C5×D4).16D4, C4.181(D4×D5), C52C8.49D4, (C5×Q8).16D4, C4○D4.27D10, C20.200(C2×D4), D4.7(C5⋊D4), C55(D4.5D4), (C2×Q8).70D10, Q8.7(C5⋊D4), (C2×C20).19C23, D4.Dic5.1C2, C20.53D412C2, C4.12D2011C2, C20.10D410C2, D4.9D10.2C2, (Q8×C10).97C22, C10.127(C4⋊D4), C4.Dic5.28C22, C2.33(Dic5⋊D4), C22.16(D42D5), (C5×M4(2)).26C22, (C2×Dic10).140C22, C4.56(C2×C5⋊D4), (C2×C5⋊Q16)⋊22C2, (C2×C4).19(C22×D5), (C5×C8.C22).1C2, (C2×C10).39(C4○D4), (C5×C4○D4).17C22, (C2×C52C8).173C22, SmallGroup(320,831)

Series: Derived Chief Lower central Upper central

C1C2×C20 — M4(2).16D10
C1C5C10C20C2×C20C2×Dic10D4.9D10 — M4(2).16D10
C5C10C2×C20 — M4(2).16D10
C1C2C2×C4C8.C22

Generators and relations for M4(2).16D10
 G = < a,b,c,d | a8=b2=c10=1, d2=a6, bab=a5, cac-1=a3, dad-1=a3b, cbc-1=dbd-1=a4b, dcd-1=a2c-1 >

Subgroups: 318 in 100 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C10, C10, C2×C8, M4(2), M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, Dic5, C20, C20, C2×C10, C2×C10, C4.10D4, C8.C4, C8○D4, C2×Q16, C8.C22, C8.C22, C52C8, C52C8, C40, Dic10, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, D4.5D4, C2×C52C8, C2×C52C8, C4.Dic5, C4.Dic5, D4.D5, C5⋊Q16, C5×M4(2), C5×SD16, C5×Q16, C2×Dic10, Q8×C10, C5×C4○D4, C20.53D4, C4.12D20, C20.10D4, C2×C5⋊Q16, D4.Dic5, D4.9D10, C5×C8.C22, M4(2).16D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C5⋊D4, C22×D5, D4.5D4, D4×D5, D42D5, C2×C5⋊D4, Dic5⋊D4, M4(2).16D10

Smallest permutation representation of M4(2).16D10
On 160 points
Generators in S160
(1 123 44 128 31 98 49 93)(2 129 50 124 32 94 45 99)(3 125 46 130 33 100 41 95)(4 121 42 126 34 96 47 91)(5 127 48 122 35 92 43 97)(6 73 143 78 16 89 148 84)(7 79 149 74 17 85 144 90)(8 75 145 80 18 81 150 86)(9 71 141 76 19 87 146 82)(10 77 147 72 20 83 142 88)(11 65 104 70 39 134 109 139)(12 61 110 66 40 140 105 135)(13 67 106 62 36 136 101 131)(14 63 102 68 37 132 107 137)(15 69 108 64 38 138 103 133)(21 58 116 53 28 152 111 157)(22 54 112 59 29 158 117 153)(23 60 118 55 30 154 113 159)(24 56 114 51 26 160 119 155)(25 52 120 57 27 156 115 151)
(1 114)(2 120)(3 116)(4 112)(5 118)(6 102)(7 108)(8 104)(9 110)(10 106)(11 150)(12 146)(13 142)(14 148)(15 144)(16 107)(17 103)(18 109)(19 105)(20 101)(21 41)(22 47)(23 43)(24 49)(25 45)(26 44)(27 50)(28 46)(29 42)(30 48)(31 119)(32 115)(33 111)(34 117)(35 113)(36 147)(37 143)(38 149)(39 145)(40 141)(51 98)(52 124)(53 100)(54 126)(55 92)(56 128)(57 94)(58 130)(59 96)(60 122)(61 76)(62 83)(63 78)(64 85)(65 80)(66 87)(67 72)(68 89)(69 74)(70 81)(71 135)(73 137)(75 139)(77 131)(79 133)(82 140)(84 132)(86 134)(88 136)(90 138)(91 158)(93 160)(95 152)(97 154)(99 156)(121 153)(123 155)(125 157)(127 159)(129 151)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 68 49 63 31 137 44 132)(2 62 45 67 32 131 50 136)(3 66 41 61 33 135 46 140)(4 70 47 65 34 139 42 134)(5 64 43 69 35 133 48 138)(6 128 148 123 16 93 143 98)(7 122 144 127 17 97 149 92)(8 126 150 121 18 91 145 96)(9 130 146 125 19 95 141 100)(10 124 142 129 20 99 147 94)(11 59 109 54 39 153 104 158)(12 53 105 58 40 157 110 152)(13 57 101 52 36 151 106 156)(14 51 107 56 37 155 102 160)(15 55 103 60 38 159 108 154)(21 82 111 87 28 76 116 71)(22 86 117 81 29 80 112 75)(23 90 113 85 30 74 118 79)(24 84 119 89 26 78 114 73)(25 88 115 83 27 72 120 77)

G:=sub<Sym(160)| (1,123,44,128,31,98,49,93)(2,129,50,124,32,94,45,99)(3,125,46,130,33,100,41,95)(4,121,42,126,34,96,47,91)(5,127,48,122,35,92,43,97)(6,73,143,78,16,89,148,84)(7,79,149,74,17,85,144,90)(8,75,145,80,18,81,150,86)(9,71,141,76,19,87,146,82)(10,77,147,72,20,83,142,88)(11,65,104,70,39,134,109,139)(12,61,110,66,40,140,105,135)(13,67,106,62,36,136,101,131)(14,63,102,68,37,132,107,137)(15,69,108,64,38,138,103,133)(21,58,116,53,28,152,111,157)(22,54,112,59,29,158,117,153)(23,60,118,55,30,154,113,159)(24,56,114,51,26,160,119,155)(25,52,120,57,27,156,115,151), (1,114)(2,120)(3,116)(4,112)(5,118)(6,102)(7,108)(8,104)(9,110)(10,106)(11,150)(12,146)(13,142)(14,148)(15,144)(16,107)(17,103)(18,109)(19,105)(20,101)(21,41)(22,47)(23,43)(24,49)(25,45)(26,44)(27,50)(28,46)(29,42)(30,48)(31,119)(32,115)(33,111)(34,117)(35,113)(36,147)(37,143)(38,149)(39,145)(40,141)(51,98)(52,124)(53,100)(54,126)(55,92)(56,128)(57,94)(58,130)(59,96)(60,122)(61,76)(62,83)(63,78)(64,85)(65,80)(66,87)(67,72)(68,89)(69,74)(70,81)(71,135)(73,137)(75,139)(77,131)(79,133)(82,140)(84,132)(86,134)(88,136)(90,138)(91,158)(93,160)(95,152)(97,154)(99,156)(121,153)(123,155)(125,157)(127,159)(129,151), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,68,49,63,31,137,44,132)(2,62,45,67,32,131,50,136)(3,66,41,61,33,135,46,140)(4,70,47,65,34,139,42,134)(5,64,43,69,35,133,48,138)(6,128,148,123,16,93,143,98)(7,122,144,127,17,97,149,92)(8,126,150,121,18,91,145,96)(9,130,146,125,19,95,141,100)(10,124,142,129,20,99,147,94)(11,59,109,54,39,153,104,158)(12,53,105,58,40,157,110,152)(13,57,101,52,36,151,106,156)(14,51,107,56,37,155,102,160)(15,55,103,60,38,159,108,154)(21,82,111,87,28,76,116,71)(22,86,117,81,29,80,112,75)(23,90,113,85,30,74,118,79)(24,84,119,89,26,78,114,73)(25,88,115,83,27,72,120,77)>;

G:=Group( (1,123,44,128,31,98,49,93)(2,129,50,124,32,94,45,99)(3,125,46,130,33,100,41,95)(4,121,42,126,34,96,47,91)(5,127,48,122,35,92,43,97)(6,73,143,78,16,89,148,84)(7,79,149,74,17,85,144,90)(8,75,145,80,18,81,150,86)(9,71,141,76,19,87,146,82)(10,77,147,72,20,83,142,88)(11,65,104,70,39,134,109,139)(12,61,110,66,40,140,105,135)(13,67,106,62,36,136,101,131)(14,63,102,68,37,132,107,137)(15,69,108,64,38,138,103,133)(21,58,116,53,28,152,111,157)(22,54,112,59,29,158,117,153)(23,60,118,55,30,154,113,159)(24,56,114,51,26,160,119,155)(25,52,120,57,27,156,115,151), (1,114)(2,120)(3,116)(4,112)(5,118)(6,102)(7,108)(8,104)(9,110)(10,106)(11,150)(12,146)(13,142)(14,148)(15,144)(16,107)(17,103)(18,109)(19,105)(20,101)(21,41)(22,47)(23,43)(24,49)(25,45)(26,44)(27,50)(28,46)(29,42)(30,48)(31,119)(32,115)(33,111)(34,117)(35,113)(36,147)(37,143)(38,149)(39,145)(40,141)(51,98)(52,124)(53,100)(54,126)(55,92)(56,128)(57,94)(58,130)(59,96)(60,122)(61,76)(62,83)(63,78)(64,85)(65,80)(66,87)(67,72)(68,89)(69,74)(70,81)(71,135)(73,137)(75,139)(77,131)(79,133)(82,140)(84,132)(86,134)(88,136)(90,138)(91,158)(93,160)(95,152)(97,154)(99,156)(121,153)(123,155)(125,157)(127,159)(129,151), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,68,49,63,31,137,44,132)(2,62,45,67,32,131,50,136)(3,66,41,61,33,135,46,140)(4,70,47,65,34,139,42,134)(5,64,43,69,35,133,48,138)(6,128,148,123,16,93,143,98)(7,122,144,127,17,97,149,92)(8,126,150,121,18,91,145,96)(9,130,146,125,19,95,141,100)(10,124,142,129,20,99,147,94)(11,59,109,54,39,153,104,158)(12,53,105,58,40,157,110,152)(13,57,101,52,36,151,106,156)(14,51,107,56,37,155,102,160)(15,55,103,60,38,159,108,154)(21,82,111,87,28,76,116,71)(22,86,117,81,29,80,112,75)(23,90,113,85,30,74,118,79)(24,84,119,89,26,78,114,73)(25,88,115,83,27,72,120,77) );

G=PermutationGroup([[(1,123,44,128,31,98,49,93),(2,129,50,124,32,94,45,99),(3,125,46,130,33,100,41,95),(4,121,42,126,34,96,47,91),(5,127,48,122,35,92,43,97),(6,73,143,78,16,89,148,84),(7,79,149,74,17,85,144,90),(8,75,145,80,18,81,150,86),(9,71,141,76,19,87,146,82),(10,77,147,72,20,83,142,88),(11,65,104,70,39,134,109,139),(12,61,110,66,40,140,105,135),(13,67,106,62,36,136,101,131),(14,63,102,68,37,132,107,137),(15,69,108,64,38,138,103,133),(21,58,116,53,28,152,111,157),(22,54,112,59,29,158,117,153),(23,60,118,55,30,154,113,159),(24,56,114,51,26,160,119,155),(25,52,120,57,27,156,115,151)], [(1,114),(2,120),(3,116),(4,112),(5,118),(6,102),(7,108),(8,104),(9,110),(10,106),(11,150),(12,146),(13,142),(14,148),(15,144),(16,107),(17,103),(18,109),(19,105),(20,101),(21,41),(22,47),(23,43),(24,49),(25,45),(26,44),(27,50),(28,46),(29,42),(30,48),(31,119),(32,115),(33,111),(34,117),(35,113),(36,147),(37,143),(38,149),(39,145),(40,141),(51,98),(52,124),(53,100),(54,126),(55,92),(56,128),(57,94),(58,130),(59,96),(60,122),(61,76),(62,83),(63,78),(64,85),(65,80),(66,87),(67,72),(68,89),(69,74),(70,81),(71,135),(73,137),(75,139),(77,131),(79,133),(82,140),(84,132),(86,134),(88,136),(90,138),(91,158),(93,160),(95,152),(97,154),(99,156),(121,153),(123,155),(125,157),(127,159),(129,151)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,68,49,63,31,137,44,132),(2,62,45,67,32,131,50,136),(3,66,41,61,33,135,46,140),(4,70,47,65,34,139,42,134),(5,64,43,69,35,133,48,138),(6,128,148,123,16,93,143,98),(7,122,144,127,17,97,149,92),(8,126,150,121,18,91,145,96),(9,130,146,125,19,95,141,100),(10,124,142,129,20,99,147,94),(11,59,109,54,39,153,104,158),(12,53,105,58,40,157,110,152),(13,57,101,52,36,151,106,156),(14,51,107,56,37,155,102,160),(15,55,103,60,38,159,108,154),(21,82,111,87,28,76,116,71),(22,86,117,81,29,80,112,75),(23,90,113,85,30,74,118,79),(24,84,119,89,26,78,114,73),(25,88,115,83,27,72,120,77)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B8A8B8C8D8E8F8G10A10B10C10D10E10F20A20B20C20D20E···20J40A40B40C40D
order1222444445588888881010101010102020202020···2040404040
size112422484022810102020204022448844448···88888

38 irreducible representations

dim1111111122222222224448
type+++++++++++++++-+--
imageC1C2C2C2C2C2C2C2D4D4D4D5C4○D4D10D10D10C5⋊D4C5⋊D4D4.5D4D4×D5D42D5M4(2).16D10
kernelM4(2).16D10C20.53D4C4.12D20C20.10D4C2×C5⋊Q16D4.Dic5D4.9D10C5×C8.C22C52C8C5×D4C5×Q8C8.C22C2×C10M4(2)C2×Q8C4○D4D4Q8C5C4C22C1
# reps1111111121122222442222

Matrix representation of M4(2).16D10 in GL6(𝔽41)

100000
29400000
0023151717
0040190
0017121818
00110170
,
4000000
0400000
000204039
0003255
0012500
0040099
,
2300000
12250000
00401600
000100
000204039
000001
,
2140000
32390000
00036029
0025253019
00037010
00108816

G:=sub<GL(6,GF(41))| [1,29,0,0,0,0,0,40,0,0,0,0,0,0,23,4,17,11,0,0,15,0,12,0,0,0,17,19,18,17,0,0,17,0,18,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,40,0,0,20,32,25,0,0,0,40,5,0,9,0,0,39,5,0,9],[23,12,0,0,0,0,0,25,0,0,0,0,0,0,40,0,0,0,0,0,16,1,20,0,0,0,0,0,40,0,0,0,0,0,39,1],[2,32,0,0,0,0,14,39,0,0,0,0,0,0,0,25,0,10,0,0,36,25,37,8,0,0,0,30,0,8,0,0,29,19,10,16] >;

M4(2).16D10 in GAP, Magma, Sage, TeX

M_4(2)._{16}D_{10}
% in TeX

G:=Group("M4(2).16D10");
// GroupNames label

G:=SmallGroup(320,831);
// by ID

G=gap.SmallGroup(320,831);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,219,184,1123,297,136,1684,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=1,d^2=a^6,b*a*b=a^5,c*a*c^-1=a^3,d*a*d^-1=a^3*b,c*b*c^-1=d*b*d^-1=a^4*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽