metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic10.37D4, (C2×C10)⋊2Q16, C4⋊C4.69D10, (C2×C20).79D4, C4.103(D4×D5), C22⋊Q8.5D5, C20.156(C2×D4), (C2×Q8).31D10, C10.38(C2×Q16), C5⋊3(C22⋊Q16), C10.49C22≀C2, C10.Q16⋊38C2, C22⋊2(C5⋊Q16), (C22×C10).96D4, (C2×C20).369C23, C20.55D4.9C2, (C22×C4).130D10, C23.63(C5⋊D4), (Q8×C10).49C22, C2.17(C23⋊D10), C2.15(D4.9D10), C10.117(C8.C22), (C22×C20).173C22, (C22×Dic10).14C2, (C2×Dic10).279C22, (C2×C5⋊Q16)⋊9C2, C2.9(C2×C5⋊Q16), (C5×C22⋊Q8).4C2, (C2×C10).500(C2×D4), (C2×C4).57(C5⋊D4), (C5×C4⋊C4).116C22, (C2×C4).469(C22×D5), C22.175(C2×C5⋊D4), (C2×C5⋊2C8).117C22, SmallGroup(320,677)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic10.37D4
G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a11, ad=da, cbc-1=a5b, bd=db, dcd=a10c-1 >
Subgroups: 526 in 148 conjugacy classes, 47 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C5⋊2C8, Dic10, Dic10, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×C10, C22⋊Q16, C2×C5⋊2C8, C5⋊Q16, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, Q8×C10, C10.Q16, C20.55D4, C2×C5⋊Q16, C5×C22⋊Q8, C22×Dic10, Dic10.37D4
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, D10, C22≀C2, C2×Q16, C8.C22, C5⋊D4, C22×D5, C22⋊Q16, C5⋊Q16, D4×D5, C2×C5⋊D4, C23⋊D10, C2×C5⋊Q16, D4.9D10, Dic10.37D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 53 11 43)(2 52 12 42)(3 51 13 41)(4 50 14 60)(5 49 15 59)(6 48 16 58)(7 47 17 57)(8 46 18 56)(9 45 19 55)(10 44 20 54)(21 147 31 157)(22 146 32 156)(23 145 33 155)(24 144 34 154)(25 143 35 153)(26 142 36 152)(27 141 37 151)(28 160 38 150)(29 159 39 149)(30 158 40 148)(61 131 71 121)(62 130 72 140)(63 129 73 139)(64 128 74 138)(65 127 75 137)(66 126 76 136)(67 125 77 135)(68 124 78 134)(69 123 79 133)(70 122 80 132)(81 115 91 105)(82 114 92 104)(83 113 93 103)(84 112 94 102)(85 111 95 101)(86 110 96 120)(87 109 97 119)(88 108 98 118)(89 107 99 117)(90 106 100 116)
(1 112 154 137)(2 103 155 128)(3 114 156 139)(4 105 157 130)(5 116 158 121)(6 107 159 132)(7 118 160 123)(8 109 141 134)(9 120 142 125)(10 111 143 136)(11 102 144 127)(12 113 145 138)(13 104 146 129)(14 115 147 140)(15 106 148 131)(16 117 149 122)(17 108 150 133)(18 119 151 124)(19 110 152 135)(20 101 153 126)(21 67 50 96)(22 78 51 87)(23 69 52 98)(24 80 53 89)(25 71 54 100)(26 62 55 91)(27 73 56 82)(28 64 57 93)(29 75 58 84)(30 66 59 95)(31 77 60 86)(32 68 41 97)(33 79 42 88)(34 70 43 99)(35 61 44 90)(36 72 45 81)(37 63 46 92)(38 74 47 83)(39 65 48 94)(40 76 49 85)
(61 100)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 97)(79 98)(80 99)(101 136)(102 137)(103 138)(104 139)(105 140)(106 121)(107 122)(108 123)(109 124)(110 125)(111 126)(112 127)(113 128)(114 129)(115 130)(116 131)(117 132)(118 133)(119 134)(120 135)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,53,11,43)(2,52,12,42)(3,51,13,41)(4,50,14,60)(5,49,15,59)(6,48,16,58)(7,47,17,57)(8,46,18,56)(9,45,19,55)(10,44,20,54)(21,147,31,157)(22,146,32,156)(23,145,33,155)(24,144,34,154)(25,143,35,153)(26,142,36,152)(27,141,37,151)(28,160,38,150)(29,159,39,149)(30,158,40,148)(61,131,71,121)(62,130,72,140)(63,129,73,139)(64,128,74,138)(65,127,75,137)(66,126,76,136)(67,125,77,135)(68,124,78,134)(69,123,79,133)(70,122,80,132)(81,115,91,105)(82,114,92,104)(83,113,93,103)(84,112,94,102)(85,111,95,101)(86,110,96,120)(87,109,97,119)(88,108,98,118)(89,107,99,117)(90,106,100,116), (1,112,154,137)(2,103,155,128)(3,114,156,139)(4,105,157,130)(5,116,158,121)(6,107,159,132)(7,118,160,123)(8,109,141,134)(9,120,142,125)(10,111,143,136)(11,102,144,127)(12,113,145,138)(13,104,146,129)(14,115,147,140)(15,106,148,131)(16,117,149,122)(17,108,150,133)(18,119,151,124)(19,110,152,135)(20,101,153,126)(21,67,50,96)(22,78,51,87)(23,69,52,98)(24,80,53,89)(25,71,54,100)(26,62,55,91)(27,73,56,82)(28,64,57,93)(29,75,58,84)(30,66,59,95)(31,77,60,86)(32,68,41,97)(33,79,42,88)(34,70,43,99)(35,61,44,90)(36,72,45,81)(37,63,46,92)(38,74,47,83)(39,65,48,94)(40,76,49,85), (61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(101,136)(102,137)(103,138)(104,139)(105,140)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,53,11,43)(2,52,12,42)(3,51,13,41)(4,50,14,60)(5,49,15,59)(6,48,16,58)(7,47,17,57)(8,46,18,56)(9,45,19,55)(10,44,20,54)(21,147,31,157)(22,146,32,156)(23,145,33,155)(24,144,34,154)(25,143,35,153)(26,142,36,152)(27,141,37,151)(28,160,38,150)(29,159,39,149)(30,158,40,148)(61,131,71,121)(62,130,72,140)(63,129,73,139)(64,128,74,138)(65,127,75,137)(66,126,76,136)(67,125,77,135)(68,124,78,134)(69,123,79,133)(70,122,80,132)(81,115,91,105)(82,114,92,104)(83,113,93,103)(84,112,94,102)(85,111,95,101)(86,110,96,120)(87,109,97,119)(88,108,98,118)(89,107,99,117)(90,106,100,116), (1,112,154,137)(2,103,155,128)(3,114,156,139)(4,105,157,130)(5,116,158,121)(6,107,159,132)(7,118,160,123)(8,109,141,134)(9,120,142,125)(10,111,143,136)(11,102,144,127)(12,113,145,138)(13,104,146,129)(14,115,147,140)(15,106,148,131)(16,117,149,122)(17,108,150,133)(18,119,151,124)(19,110,152,135)(20,101,153,126)(21,67,50,96)(22,78,51,87)(23,69,52,98)(24,80,53,89)(25,71,54,100)(26,62,55,91)(27,73,56,82)(28,64,57,93)(29,75,58,84)(30,66,59,95)(31,77,60,86)(32,68,41,97)(33,79,42,88)(34,70,43,99)(35,61,44,90)(36,72,45,81)(37,63,46,92)(38,74,47,83)(39,65,48,94)(40,76,49,85), (61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(101,136)(102,137)(103,138)(104,139)(105,140)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,53,11,43),(2,52,12,42),(3,51,13,41),(4,50,14,60),(5,49,15,59),(6,48,16,58),(7,47,17,57),(8,46,18,56),(9,45,19,55),(10,44,20,54),(21,147,31,157),(22,146,32,156),(23,145,33,155),(24,144,34,154),(25,143,35,153),(26,142,36,152),(27,141,37,151),(28,160,38,150),(29,159,39,149),(30,158,40,148),(61,131,71,121),(62,130,72,140),(63,129,73,139),(64,128,74,138),(65,127,75,137),(66,126,76,136),(67,125,77,135),(68,124,78,134),(69,123,79,133),(70,122,80,132),(81,115,91,105),(82,114,92,104),(83,113,93,103),(84,112,94,102),(85,111,95,101),(86,110,96,120),(87,109,97,119),(88,108,98,118),(89,107,99,117),(90,106,100,116)], [(1,112,154,137),(2,103,155,128),(3,114,156,139),(4,105,157,130),(5,116,158,121),(6,107,159,132),(7,118,160,123),(8,109,141,134),(9,120,142,125),(10,111,143,136),(11,102,144,127),(12,113,145,138),(13,104,146,129),(14,115,147,140),(15,106,148,131),(16,117,149,122),(17,108,150,133),(18,119,151,124),(19,110,152,135),(20,101,153,126),(21,67,50,96),(22,78,51,87),(23,69,52,98),(24,80,53,89),(25,71,54,100),(26,62,55,91),(27,73,56,82),(28,64,57,93),(29,75,58,84),(30,66,59,95),(31,77,60,86),(32,68,41,97),(33,79,42,88),(34,70,43,99),(35,61,44,90),(36,72,45,81),(37,63,46,92),(38,74,47,83),(39,65,48,94),(40,76,49,85)], [(61,100),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,97),(79,98),(80,99),(101,136),(102,137),(103,138),(104,139),(105,140),(106,121),(107,122),(108,123),(109,124),(110,125),(111,126),(112,127),(113,128),(114,129),(115,130),(116,131),(117,132),(118,133),(119,134),(120,135)]])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 20 | 20 | 20 | 20 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | Q16 | D10 | D10 | D10 | C5⋊D4 | C5⋊D4 | C8.C22 | D4×D5 | C5⋊Q16 | D4.9D10 |
kernel | Dic10.37D4 | C10.Q16 | C20.55D4 | C2×C5⋊Q16 | C5×C22⋊Q8 | C22×Dic10 | Dic10 | C2×C20 | C22×C10 | C22⋊Q8 | C2×C10 | C4⋊C4 | C22×C4 | C2×Q8 | C2×C4 | C23 | C10 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 1 | 4 | 4 | 4 |
Matrix representation of Dic10.37D4 ►in GL6(𝔽41)
16 | 0 | 0 | 0 | 0 | 0 |
37 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 28 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
11 | 15 | 0 | 0 | 0 | 0 |
33 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 15 | 0 | 0 |
0 | 0 | 18 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 37 | 0 | 0 |
0 | 0 | 26 | 29 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [16,37,0,0,0,0,0,18,0,0,0,0,0,0,32,28,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[11,33,0,0,0,0,15,30,0,0,0,0,0,0,37,18,0,0,0,0,15,4,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,26,0,0,0,0,37,29,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;
Dic10.37D4 in GAP, Magma, Sage, TeX
{\rm Dic}_{10}._{37}D_4
% in TeX
G:=Group("Dic10.37D4");
// GroupNames label
G:=SmallGroup(320,677);
// by ID
G=gap.SmallGroup(320,677);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,254,219,184,1123,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=a^10*c^-1>;
// generators/relations