extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4)⋊1D10 = D20⋊16D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):1D10 | 320,663 |
(C2×D4)⋊2D10 = D20⋊5D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 4 | (C2xD4):2D10 | 320,704 |
(C2×D4)⋊3D10 = D20⋊D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):3D10 | 320,783 |
(C2×D4)⋊4D10 = D20⋊18D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4):4D10 | 320,825 |
(C2×D4)⋊5D10 = C24⋊3D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):5D10 | 320,1261 |
(C2×D4)⋊6D10 = C24.34D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):6D10 | 320,1264 |
(C2×D4)⋊7D10 = C10.382+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):7D10 | 320,1279 |
(C2×D4)⋊8D10 = D20⋊20D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):8D10 | 320,1284 |
(C2×D4)⋊9D10 = C10.422+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):9D10 | 320,1285 |
(C2×D4)⋊10D10 = C10.462+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):10D10 | 320,1289 |
(C2×D4)⋊11D10 = C10.482+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):11D10 | 320,1292 |
(C2×D4)⋊12D10 = C42⋊26D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):12D10 | 320,1387 |
(C2×D4)⋊13D10 = C42⋊28D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4):13D10 | 320,1392 |
(C2×D4)⋊14D10 = D8⋊13D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4):14D10 | 320,1429 |
(C2×D4)⋊15D10 = D8⋊5D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8+ | (C2xD4):15D10 | 320,1446 |
(C2×D4)⋊16D10 = D20.32C23 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8+ | (C2xD4):16D10 | 320,1507 |
(C2×D4)⋊17D10 = D5×C22≀C2 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 40 | | (C2xD4):17D10 | 320,1260 |
(C2×D4)⋊18D10 = C24⋊4D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):18D10 | 320,1262 |
(C2×D4)⋊19D10 = C24.33D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):19D10 | 320,1263 |
(C2×D4)⋊20D10 = D5×C4⋊D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):20D10 | 320,1276 |
(C2×D4)⋊21D10 = C10.372+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):21D10 | 320,1277 |
(C2×D4)⋊22D10 = C4⋊C4⋊21D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):22D10 | 320,1278 |
(C2×D4)⋊23D10 = D20⋊19D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):23D10 | 320,1281 |
(C2×D4)⋊24D10 = C10.402+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):24D10 | 320,1282 |
(C2×D4)⋊25D10 = D5×C4⋊1D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):25D10 | 320,1386 |
(C2×D4)⋊26D10 = D20⋊11D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):26D10 | 320,1389 |
(C2×D4)⋊27D10 = C2×D5×D8 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):27D10 | 320,1426 |
(C2×D4)⋊28D10 = C2×D8⋊D5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):28D10 | 320,1427 |
(C2×D4)⋊29D10 = D5×C8⋊C22 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4):29D10 | 320,1444 |
(C2×D4)⋊30D10 = SD16⋊D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | 8- | (C2xD4):30D10 | 320,1445 |
(C2×D4)⋊31D10 = D5×2+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4):31D10 | 320,1622 |
(C2×D4)⋊32D10 = D20.37C23 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | 8- | (C2xD4):32D10 | 320,1623 |
(C2×D4)⋊33D10 = C22×D4⋊D5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4):33D10 | 320,1464 |
(C2×D4)⋊34D10 = C2×D4.D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):34D10 | 320,1465 |
(C2×D4)⋊35D10 = C2×C23⋊D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):35D10 | 320,1471 |
(C2×D4)⋊36D10 = C2×C20⋊2D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4):36D10 | 320,1472 |
(C2×D4)⋊37D10 = D4×C5⋊D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):37D10 | 320,1473 |
(C2×D4)⋊38D10 = C2×Dic5⋊D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4):38D10 | 320,1474 |
(C2×D4)⋊39D10 = C2×C20⋊D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4):39D10 | 320,1475 |
(C2×D4)⋊40D10 = C24⋊8D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):40D10 | 320,1476 |
(C2×D4)⋊41D10 = C2×D4⋊D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):41D10 | 320,1492 |
(C2×D4)⋊42D10 = C20.C24 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | 4 | (C2xD4):42D10 | 320,1494 |
(C2×D4)⋊43D10 = (C2×C20)⋊15D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):43D10 | 320,1500 |
(C2×D4)⋊44D10 = C10.1452+ 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):44D10 | 320,1501 |
(C2×D4)⋊45D10 = C10.1462+ 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):45D10 | 320,1502 |
(C2×D4)⋊46D10 = C2×D4⋊6D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4):46D10 | 320,1614 |
(C2×D4)⋊47D10 = C10.C25 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | 4 | (C2xD4):47D10 | 320,1621 |
(C2×D4)⋊48D10 = C22×D4⋊2D5 | φ: trivial image | 160 | | (C2xD4):48D10 | 320,1613 |
(C2×D4)⋊49D10 = C2×D5×C4○D4 | φ: trivial image | 80 | | (C2xD4):49D10 | 320,1618 |
(C2×D4)⋊50D10 = C2×D4⋊8D10 | φ: trivial image | 80 | | (C2xD4):50D10 | 320,1619 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4).1D10 = C5⋊3C2≀C4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).1D10 | 320,29 |
(C2×D4).2D10 = (C2×C20).D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).2D10 | 320,30 |
(C2×D4).3D10 = C23.D20 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).3D10 | 320,31 |
(C2×D4).4D10 = C23.2D20 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).4D10 | 320,32 |
(C2×D4).5D10 = C23.3D20 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).5D10 | 320,33 |
(C2×D4).6D10 = C23.4D20 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).6D10 | 320,34 |
(C2×D4).7D10 = C24⋊2Dic5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 4 | (C2xD4).7D10 | 320,94 |
(C2×D4).8D10 = (C22×C20)⋊C4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).8D10 | 320,97 |
(C2×D4).9D10 = C42⋊Dic5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).9D10 | 320,99 |
(C2×D4).10D10 = C42⋊3Dic5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 4 | (C2xD4).10D10 | 320,103 |
(C2×D4).11D10 = C23⋊D20 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).11D10 | 320,368 |
(C2×D4).12D10 = C23.5D20 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).12D10 | 320,369 |
(C2×D4).13D10 = D20.1D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).13D10 | 320,373 |
(C2×D4).14D10 = D20⋊1D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).14D10 | 320,374 |
(C2×D4).15D10 = D20.2D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).15D10 | 320,375 |
(C2×D4).16D10 = D20.3D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8+ | (C2xD4).16D10 | 320,376 |
(C2×D4).17D10 = Dic5.5D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).17D10 | 320,387 |
(C2×D4).18D10 = Dic10⋊2D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).18D10 | 320,389 |
(C2×D4).19D10 = C4⋊C4.D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).19D10 | 320,391 |
(C2×D4).20D10 = C20⋊Q8⋊C2 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).20D10 | 320,392 |
(C2×D4).21D10 = Dic10.D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).21D10 | 320,394 |
(C2×D4).22D10 = (C8×Dic5)⋊C2 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).22D10 | 320,395 |
(C2×D4).23D10 = D10.12D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).23D10 | 320,401 |
(C2×D4).24D10 = D10⋊D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).24D10 | 320,402 |
(C2×D4).25D10 = D10.16SD16 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).25D10 | 320,404 |
(C2×D4).26D10 = D10⋊SD16 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).26D10 | 320,405 |
(C2×D4).27D10 = C40⋊6C4⋊C2 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).27D10 | 320,406 |
(C2×D4).28D10 = C5⋊2C8⋊D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).28D10 | 320,407 |
(C2×D4).29D10 = C5⋊(C8⋊2D4) | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).29D10 | 320,409 |
(C2×D4).30D10 = C40⋊5C4⋊C2 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).30D10 | 320,411 |
(C2×D4).31D10 = D20⋊3D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).31D10 | 320,413 |
(C2×D4).32D10 = D20.D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).32D10 | 320,414 |
(C2×D4).33D10 = C24⋊2D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 4 | (C2xD4).33D10 | 320,659 |
(C2×D4).34D10 = (C2×C10).D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).34D10 | 320,660 |
(C2×D4).35D10 = C4⋊D4.D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).35D10 | 320,661 |
(C2×D4).36D10 = (C2×D4).D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).36D10 | 320,662 |
(C2×D4).37D10 = D20⋊17D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).37D10 | 320,664 |
(C2×D4).38D10 = (C2×C10)⋊D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).38D10 | 320,665 |
(C2×D4).39D10 = C4⋊D4⋊D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).39D10 | 320,666 |
(C2×D4).40D10 = Dic10⋊17D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).40D10 | 320,667 |
(C2×D4).41D10 = C5⋊2C8⋊23D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).41D10 | 320,668 |
(C2×D4).42D10 = C4.(D4×D5) | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).42D10 | 320,669 |
(C2×D4).43D10 = C22⋊C4⋊D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).43D10 | 320,680 |
(C2×D4).44D10 = C42.61D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).44D10 | 320,681 |
(C2×D4).45D10 = C42.62D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).45D10 | 320,682 |
(C2×D4).46D10 = C42.213D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).46D10 | 320,683 |
(C2×D4).47D10 = D20.23D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).47D10 | 320,684 |
(C2×D4).48D10 = C42.64D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).48D10 | 320,685 |
(C2×D4).49D10 = C42.214D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).49D10 | 320,686 |
(C2×D4).50D10 = C42.65D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).50D10 | 320,687 |
(C2×D4).51D10 = C42⋊5D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).51D10 | 320,688 |
(C2×D4).52D10 = D20.14D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).52D10 | 320,689 |
(C2×D4).53D10 = C20.16D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).53D10 | 320,697 |
(C2×D4).54D10 = C42.72D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).54D10 | 320,698 |
(C2×D4).55D10 = C20⋊2D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).55D10 | 320,699 |
(C2×D4).56D10 = C20⋊D8 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).56D10 | 320,700 |
(C2×D4).57D10 = C42.74D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).57D10 | 320,701 |
(C2×D4).58D10 = Dic10⋊9D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).58D10 | 320,702 |
(C2×D4).59D10 = C20⋊4SD16 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).59D10 | 320,703 |
(C2×D4).60D10 = C40⋊5D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).60D10 | 320,778 |
(C2×D4).61D10 = (C2×D8).D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).61D10 | 320,780 |
(C2×D4).62D10 = C40⋊11D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).62D10 | 320,781 |
(C2×D4).63D10 = C40.22D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).63D10 | 320,782 |
(C2×D4).64D10 = C40⋊6D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).64D10 | 320,784 |
(C2×D4).65D10 = Dic10⋊D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).65D10 | 320,785 |
(C2×D4).66D10 = C40⋊12D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).66D10 | 320,786 |
(C2×D4).67D10 = C40.23D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).67D10 | 320,787 |
(C2×D4).68D10 = Dic5⋊5SD16 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).68D10 | 320,790 |
(C2×D4).69D10 = (C5×Q8).D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).69D10 | 320,793 |
(C2×D4).70D10 = C40.31D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).70D10 | 320,794 |
(C2×D4).71D10 = C40.43D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).71D10 | 320,795 |
(C2×D4).72D10 = D10⋊8SD16 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).72D10 | 320,797 |
(C2×D4).73D10 = C40⋊14D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).73D10 | 320,798 |
(C2×D4).74D10 = D20⋊7D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).74D10 | 320,799 |
(C2×D4).75D10 = C40⋊8D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).75D10 | 320,801 |
(C2×D4).76D10 = C40⋊15D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).76D10 | 320,802 |
(C2×D4).77D10 = C40⋊9D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).77D10 | 320,803 |
(C2×D4).78D10 = C40.44D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).78D10 | 320,804 |
(C2×D4).79D10 = M4(2).D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8+ | (C2xD4).79D10 | 320,826 |
(C2×D4).80D10 = M4(2).13D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).80D10 | 320,827 |
(C2×D4).81D10 = D20.38D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).81D10 | 320,828 |
(C2×D4).82D10 = 2+ 1+4⋊D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).82D10 | 320,868 |
(C2×D4).83D10 = 2+ 1+4.D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).83D10 | 320,869 |
(C2×D4).84D10 = 2+ 1+4.2D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).84D10 | 320,870 |
(C2×D4).85D10 = 2+ 1+4⋊2D5 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).85D10 | 320,871 |
(C2×D4).86D10 = C24.35D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).86D10 | 320,1265 |
(C2×D4).87D10 = C24⋊5D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).87D10 | 320,1266 |
(C2×D4).88D10 = C24.36D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).88D10 | 320,1267 |
(C2×D4).89D10 = C10.682- 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).89D10 | 320,1269 |
(C2×D4).90D10 = Dic10⋊20D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).90D10 | 320,1271 |
(C2×D4).91D10 = C10.362+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).91D10 | 320,1275 |
(C2×D4).92D10 = C10.392+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).92D10 | 320,1280 |
(C2×D4).93D10 = C10.442+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).93D10 | 320,1287 |
(C2×D4).94D10 = C10.452+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).94D10 | 320,1288 |
(C2×D4).95D10 = C10.472+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).95D10 | 320,1291 |
(C2×D4).96D10 = C10.742- 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).96D10 | 320,1293 |
(C2×D4).97D10 = C10.812- 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).97D10 | 320,1323 |
(C2×D4).98D10 = C10.612+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).98D10 | 320,1329 |
(C2×D4).99D10 = C10.622+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).99D10 | 320,1331 |
(C2×D4).100D10 = C10.632+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).100D10 | 320,1332 |
(C2×D4).101D10 = C10.642+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).101D10 | 320,1333 |
(C2×D4).102D10 = C10.842- 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).102D10 | 320,1334 |
(C2×D4).103D10 = C10.662+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).103D10 | 320,1335 |
(C2×D4).104D10 = C10.672+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).104D10 | 320,1336 |
(C2×D4).105D10 = C10.682+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).105D10 | 320,1338 |
(C2×D4).106D10 = C10.692+ 1+4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).106D10 | 320,1339 |
(C2×D4).107D10 = C42.137D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).107D10 | 320,1341 |
(C2×D4).108D10 = C42.138D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).108D10 | 320,1342 |
(C2×D4).109D10 = C42.140D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).109D10 | 320,1344 |
(C2×D4).110D10 = C42⋊20D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).110D10 | 320,1350 |
(C2×D4).111D10 = C42⋊21D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).111D10 | 320,1351 |
(C2×D4).112D10 = C42⋊22D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | | (C2xD4).112D10 | 320,1355 |
(C2×D4).113D10 = C42.145D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).113D10 | 320,1356 |
(C2×D4).114D10 = C42.166D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).114D10 | 320,1385 |
(C2×D4).115D10 = Dic10⋊11D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 160 | | (C2xD4).115D10 | 320,1390 |
(C2×D4).116D10 = D20.29D4 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).116D10 | 320,1434 |
(C2×D4).117D10 = D8⋊6D10 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).117D10 | 320,1447 |
(C2×D4).118D10 = D20.33C23 | φ: D10/C5 → C22 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).118D10 | 320,1508 |
(C2×D4).119D10 = C23⋊C4⋊5D5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).119D10 | 320,367 |
(C2×D4).120D10 = D5×C23⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).120D10 | 320,370 |
(C2×D4).121D10 = D5×C4.D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 40 | 8+ | (C2xD4).121D10 | 320,371 |
(C2×D4).122D10 = M4(2).19D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | 8- | (C2xD4).122D10 | 320,372 |
(C2×D4).123D10 = Dic5⋊4D8 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).123D10 | 320,383 |
(C2×D4).124D10 = D4.D5⋊5C4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).124D10 | 320,384 |
(C2×D4).125D10 = Dic5⋊6SD16 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).125D10 | 320,385 |
(C2×D4).126D10 = Dic5.14D8 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).126D10 | 320,386 |
(C2×D4).127D10 = D4⋊Dic10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).127D10 | 320,388 |
(C2×D4).128D10 = D4.Dic10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).128D10 | 320,390 |
(C2×D4).129D10 = D4.2Dic10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).129D10 | 320,393 |
(C2×D4).130D10 = D5×D4⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).130D10 | 320,396 |
(C2×D4).131D10 = (D4×D5)⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).131D10 | 320,397 |
(C2×D4).132D10 = D4⋊(C4×D5) | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).132D10 | 320,398 |
(C2×D4).133D10 = D4⋊2D5⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).133D10 | 320,399 |
(C2×D4).134D10 = D4⋊D20 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).134D10 | 320,400 |
(C2×D4).135D10 = D20.8D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).135D10 | 320,403 |
(C2×D4).136D10 = D4⋊3D20 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).136D10 | 320,408 |
(C2×D4).137D10 = D4.D20 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).137D10 | 320,410 |
(C2×D4).138D10 = D4⋊D5⋊6C4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).138D10 | 320,412 |
(C2×D4).139D10 = D8×Dic5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).139D10 | 320,776 |
(C2×D4).140D10 = Dic5⋊D8 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).140D10 | 320,777 |
(C2×D4).141D10 = D8⋊Dic5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).141D10 | 320,779 |
(C2×D4).142D10 = SD16×Dic5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).142D10 | 320,788 |
(C2×D4).143D10 = Dic5⋊3SD16 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).143D10 | 320,789 |
(C2×D4).144D10 = SD16⋊Dic5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).144D10 | 320,791 |
(C2×D4).145D10 = (C5×D4).D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).145D10 | 320,792 |
(C2×D4).146D10 = D10⋊6SD16 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).146D10 | 320,796 |
(C2×D4).147D10 = Dic10.16D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).147D10 | 320,800 |
(C2×D4).148D10 = C24.56D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).148D10 | 320,1258 |
(C2×D4).149D10 = C24.32D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).149D10 | 320,1259 |
(C2×D4).150D10 = C20⋊(C4○D4) | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).150D10 | 320,1268 |
(C2×D4).151D10 = Dic10⋊19D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).151D10 | 320,1270 |
(C2×D4).152D10 = C4⋊C4.178D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).152D10 | 320,1272 |
(C2×D4).153D10 = C10.342+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).153D10 | 320,1273 |
(C2×D4).154D10 = C10.352+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).154D10 | 320,1274 |
(C2×D4).155D10 = C10.732- 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).155D10 | 320,1283 |
(C2×D4).156D10 = C10.432+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).156D10 | 320,1286 |
(C2×D4).157D10 = C10.1152+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).157D10 | 320,1290 |
(C2×D4).158D10 = C10.792- 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).158D10 | 320,1320 |
(C2×D4).159D10 = C4⋊C4.197D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).159D10 | 320,1321 |
(C2×D4).160D10 = C10.802- 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).160D10 | 320,1322 |
(C2×D4).161D10 = D5×C22.D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).161D10 | 320,1324 |
(C2×D4).162D10 = C10.1202+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).162D10 | 320,1325 |
(C2×D4).163D10 = C10.1212+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).163D10 | 320,1326 |
(C2×D4).164D10 = C10.822- 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).164D10 | 320,1327 |
(C2×D4).165D10 = C4⋊C4⋊28D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).165D10 | 320,1328 |
(C2×D4).166D10 = C10.1222+ 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).166D10 | 320,1330 |
(C2×D4).167D10 = C10.852- 1+4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).167D10 | 320,1337 |
(C2×D4).168D10 = C42.233D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).168D10 | 320,1340 |
(C2×D4).169D10 = C42.139D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).169D10 | 320,1343 |
(C2×D4).170D10 = D5×C4.4D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).170D10 | 320,1345 |
(C2×D4).171D10 = C42⋊18D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).171D10 | 320,1346 |
(C2×D4).172D10 = C42.141D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).172D10 | 320,1347 |
(C2×D4).173D10 = D20⋊10D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).173D10 | 320,1348 |
(C2×D4).174D10 = Dic10⋊10D4 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).174D10 | 320,1349 |
(C2×D4).175D10 = C42.234D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).175D10 | 320,1352 |
(C2×D4).176D10 = C42.143D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).176D10 | 320,1353 |
(C2×D4).177D10 = C42.144D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).177D10 | 320,1354 |
(C2×D4).178D10 = C42.238D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).178D10 | 320,1388 |
(C2×D4).179D10 = C42.168D10 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).179D10 | 320,1391 |
(C2×D4).180D10 = C2×D8⋊3D5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).180D10 | 320,1428 |
(C2×D4).181D10 = C2×D5×SD16 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).181D10 | 320,1430 |
(C2×D4).182D10 = C2×D40⋊C2 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).182D10 | 320,1431 |
(C2×D4).183D10 = C2×SD16⋊D5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).183D10 | 320,1432 |
(C2×D4).184D10 = C2×SD16⋊3D5 | φ: D10/D5 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).184D10 | 320,1433 |
(C2×D4).185D10 = C20.50D8 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).185D10 | 320,634 |
(C2×D4).186D10 = C20.38SD16 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).186D10 | 320,635 |
(C2×D4).187D10 = D4.3Dic10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).187D10 | 320,636 |
(C2×D4).188D10 = C4×D4⋊D5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).188D10 | 320,640 |
(C2×D4).189D10 = C42.48D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).189D10 | 320,641 |
(C2×D4).190D10 = C20⋊7D8 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).190D10 | 320,642 |
(C2×D4).191D10 = D4.1D20 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).191D10 | 320,643 |
(C2×D4).192D10 = C4×D4.D5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).192D10 | 320,644 |
(C2×D4).193D10 = C42.51D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).193D10 | 320,645 |
(C2×D4).194D10 = D4.2D20 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).194D10 | 320,646 |
(C2×D4).195D10 = C2×D4⋊Dic5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).195D10 | 320,841 |
(C2×D4).196D10 = (D4×C10)⋊18C4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).196D10 | 320,842 |
(C2×D4).197D10 = C2×C20.D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).197D10 | 320,843 |
(C2×D4).198D10 = (C2×C10)⋊8D8 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).198D10 | 320,844 |
(C2×D4).199D10 = (C5×D4).31D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).199D10 | 320,845 |
(C2×D4).200D10 = C2×C23⋊Dic5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).200D10 | 320,846 |
(C2×D4).201D10 = C4○D4⋊Dic5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).201D10 | 320,859 |
(C2×D4).202D10 = C20.(C2×D4) | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).202D10 | 320,860 |
(C2×D4).203D10 = (D4×C10).29C4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).203D10 | 320,864 |
(C2×D4).204D10 = (C5×D4)⋊14D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).204D10 | 320,865 |
(C2×D4).205D10 = (C5×D4).32D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).205D10 | 320,866 |
(C2×D4).206D10 = (D4×C10)⋊22C4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | 4 | (C2xD4).206D10 | 320,867 |
(C2×D4).207D10 = C42.102D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).207D10 | 320,1210 |
(C2×D4).208D10 = C42.104D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).208D10 | 320,1212 |
(C2×D4).209D10 = C42.105D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).209D10 | 320,1213 |
(C2×D4).210D10 = C42.106D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).210D10 | 320,1214 |
(C2×D4).211D10 = C42⋊12D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).211D10 | 320,1219 |
(C2×D4).212D10 = C42.228D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).212D10 | 320,1220 |
(C2×D4).213D10 = D20⋊23D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).213D10 | 320,1222 |
(C2×D4).214D10 = D20⋊24D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).214D10 | 320,1223 |
(C2×D4).215D10 = Dic10⋊23D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).215D10 | 320,1224 |
(C2×D4).216D10 = Dic10⋊24D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).216D10 | 320,1225 |
(C2×D4).217D10 = C42⋊16D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).217D10 | 320,1228 |
(C2×D4).218D10 = C42.229D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).218D10 | 320,1229 |
(C2×D4).219D10 = C42.113D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).219D10 | 320,1230 |
(C2×D4).220D10 = C42.114D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).220D10 | 320,1231 |
(C2×D4).221D10 = C42⋊17D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).221D10 | 320,1232 |
(C2×D4).222D10 = C42.115D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).222D10 | 320,1233 |
(C2×D4).223D10 = C42.116D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).223D10 | 320,1234 |
(C2×D4).224D10 = C42.117D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).224D10 | 320,1235 |
(C2×D4).225D10 = C42.118D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).225D10 | 320,1236 |
(C2×D4).226D10 = C42.119D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).226D10 | 320,1237 |
(C2×D4).227D10 = C22×D4.D5 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).227D10 | 320,1466 |
(C2×D4).228D10 = C2×C23.18D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).228D10 | 320,1468 |
(C2×D4).229D10 = C2×C20.17D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).229D10 | 320,1469 |
(C2×D4).230D10 = C24.41D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).230D10 | 320,1477 |
(C2×D4).231D10 = C24.42D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 80 | | (C2xD4).231D10 | 320,1478 |
(C2×D4).232D10 = C2×D4.8D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).232D10 | 320,1493 |
(C2×D4).233D10 = C2×D4.9D10 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).233D10 | 320,1495 |
(C2×D4).234D10 = C10.1042- 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).234D10 | 320,1496 |
(C2×D4).235D10 = C10.1052- 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).235D10 | 320,1497 |
(C2×D4).236D10 = C10.1072- 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).236D10 | 320,1503 |
(C2×D4).237D10 = (C2×C20)⋊17D4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).237D10 | 320,1504 |
(C2×D4).238D10 = C10.1472+ 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).238D10 | 320,1505 |
(C2×D4).239D10 = C10.1482+ 1+4 | φ: D10/C10 → C2 ⊆ Out C2×D4 | 160 | | (C2xD4).239D10 | 320,1506 |
(C2×D4).240D10 = C4×D4⋊2D5 | φ: trivial image | 160 | | (C2xD4).240D10 | 320,1208 |
(C2×D4).241D10 = D4×Dic10 | φ: trivial image | 160 | | (C2xD4).241D10 | 320,1209 |
(C2×D4).242D10 = D4⋊5Dic10 | φ: trivial image | 160 | | (C2xD4).242D10 | 320,1211 |
(C2×D4).243D10 = D4⋊6Dic10 | φ: trivial image | 160 | | (C2xD4).243D10 | 320,1215 |
(C2×D4).244D10 = C4×D4×D5 | φ: trivial image | 80 | | (C2xD4).244D10 | 320,1216 |
(C2×D4).245D10 = C42⋊11D10 | φ: trivial image | 80 | | (C2xD4).245D10 | 320,1217 |
(C2×D4).246D10 = C42.108D10 | φ: trivial image | 160 | | (C2xD4).246D10 | 320,1218 |
(C2×D4).247D10 = D4×D20 | φ: trivial image | 80 | | (C2xD4).247D10 | 320,1221 |
(C2×D4).248D10 = D4⋊5D20 | φ: trivial image | 80 | | (C2xD4).248D10 | 320,1226 |
(C2×D4).249D10 = D4⋊6D20 | φ: trivial image | 160 | | (C2xD4).249D10 | 320,1227 |
(C2×D4).250D10 = C2×D4×Dic5 | φ: trivial image | 160 | | (C2xD4).250D10 | 320,1467 |
(C2×D4).251D10 = C24.38D10 | φ: trivial image | 80 | | (C2xD4).251D10 | 320,1470 |
(C2×D4).252D10 = C4○D4×Dic5 | φ: trivial image | 160 | | (C2xD4).252D10 | 320,1498 |
(C2×D4).253D10 = C10.1062- 1+4 | φ: trivial image | 160 | | (C2xD4).253D10 | 320,1499 |
(C2×D4).254D10 = C2×D4.10D10 | φ: trivial image | 160 | | (C2xD4).254D10 | 320,1620 |