Extensions 1→N→G→Q→1 with N=C12 and Q=D14

Direct product G=N×Q with N=C12 and Q=D14
dρLabelID
D7×C2×C12168D7xC2xC12336,175

Semidirect products G=N:Q with N=C12 and Q=D14
extensionφ:Q→Aut NdρLabelID
C121D14 = S3×D28φ: D14/C7C22 ⊆ Aut C12844+C12:1D14336,149
C122D14 = C28⋊D6φ: D14/C7C22 ⊆ Aut C12844C12:2D14336,150
C123D14 = D4×D21φ: D14/C7C22 ⊆ Aut C12844+C12:3D14336,198
C124D14 = D7×D12φ: D14/D7C2 ⊆ Aut C12844+C12:4D14336,148
C125D14 = C4×S3×D7φ: D14/D7C2 ⊆ Aut C12844C12:5D14336,147
C126D14 = C3×D4×D7φ: D14/D7C2 ⊆ Aut C12844C12:6D14336,178
C127D14 = C2×D84φ: D14/C14C2 ⊆ Aut C12168C12:7D14336,196
C128D14 = C2×C4×D21φ: D14/C14C2 ⊆ Aut C12168C12:8D14336,195
C129D14 = C6×D28φ: D14/C14C2 ⊆ Aut C12168C12:9D14336,176

Non-split extensions G=N.Q with N=C12 and Q=D14
extensionφ:Q→Aut NdρLabelID
C12.1D14 = C21⋊D8φ: D14/C7C22 ⊆ Aut C121684C12.1D14336,29
C12.2D14 = C3⋊D56φ: D14/C7C22 ⊆ Aut C121684+C12.2D14336,30
C12.3D14 = C28.D6φ: D14/C7C22 ⊆ Aut C121684C12.3D14336,32
C12.4D14 = C42.D4φ: D14/C7C22 ⊆ Aut C121684C12.4D14336,33
C12.5D14 = C6.D28φ: D14/C7C22 ⊆ Aut C121684-C12.5D14336,34
C12.6D14 = C21⋊SD16φ: D14/C7C22 ⊆ Aut C121684+C12.6D14336,35
C12.7D14 = C21⋊Q16φ: D14/C7C22 ⊆ Aut C123364C12.7D14336,38
C12.8D14 = C3⋊Dic28φ: D14/C7C22 ⊆ Aut C123364-C12.8D14336,39
C12.9D14 = D4⋊D21φ: D14/C7C22 ⊆ Aut C121684+C12.9D14336,101
C12.10D14 = D4.D21φ: D14/C7C22 ⊆ Aut C121684-C12.10D14336,102
C12.11D14 = Q82D21φ: D14/C7C22 ⊆ Aut C121684+C12.11D14336,103
C12.12D14 = C217Q16φ: D14/C7C22 ⊆ Aut C123364-C12.12D14336,104
C12.13D14 = D285S3φ: D14/C7C22 ⊆ Aut C121684-C12.13D14336,138
C12.14D14 = D28⋊S3φ: D14/C7C22 ⊆ Aut C121684C12.14D14336,139
C12.15D14 = S3×Dic14φ: D14/C7C22 ⊆ Aut C121684-C12.15D14336,140
C12.16D14 = D12⋊D7φ: D14/C7C22 ⊆ Aut C121684C12.16D14336,141
C12.17D14 = D84⋊C2φ: D14/C7C22 ⊆ Aut C121684+C12.17D14336,142
C12.18D14 = D21⋊Q8φ: D14/C7C22 ⊆ Aut C121684C12.18D14336,143
C12.19D14 = D42D21φ: D14/C7C22 ⊆ Aut C121684-C12.19D14336,199
C12.20D14 = Q8×D21φ: D14/C7C22 ⊆ Aut C121684-C12.20D14336,200
C12.21D14 = Q83D21φ: D14/C7C22 ⊆ Aut C121684+C12.21D14336,201
C12.22D14 = C7⋊D24φ: D14/D7C2 ⊆ Aut C121684+C12.22D14336,31
C12.23D14 = D12.D7φ: D14/D7C2 ⊆ Aut C121684-C12.23D14336,36
C12.24D14 = Dic6⋊D7φ: D14/D7C2 ⊆ Aut C121684+C12.24D14336,37
C12.25D14 = C7⋊Dic12φ: D14/D7C2 ⊆ Aut C123364-C12.25D14336,40
C12.26D14 = D7×Dic6φ: D14/D7C2 ⊆ Aut C121684-C12.26D14336,137
C12.27D14 = D125D7φ: D14/D7C2 ⊆ Aut C121684-C12.27D14336,145
C12.28D14 = D14.D6φ: D14/D7C2 ⊆ Aut C121684+C12.28D14336,146
C12.29D14 = D7×C3⋊C8φ: D14/D7C2 ⊆ Aut C121684C12.29D14336,23
C12.30D14 = S3×C7⋊C8φ: D14/D7C2 ⊆ Aut C121684C12.30D14336,24
C12.31D14 = D21⋊C8φ: D14/D7C2 ⊆ Aut C121684C12.31D14336,25
C12.32D14 = C28.32D6φ: D14/D7C2 ⊆ Aut C121684C12.32D14336,26
C12.33D14 = D6.Dic7φ: D14/D7C2 ⊆ Aut C121684C12.33D14336,27
C12.34D14 = D42.C4φ: D14/D7C2 ⊆ Aut C121684C12.34D14336,28
C12.35D14 = D6.D14φ: D14/D7C2 ⊆ Aut C121684C12.35D14336,144
C12.36D14 = C3×D4⋊D7φ: D14/D7C2 ⊆ Aut C121684C12.36D14336,69
C12.37D14 = C3×D4.D7φ: D14/D7C2 ⊆ Aut C121684C12.37D14336,70
C12.38D14 = C3×Q8⋊D7φ: D14/D7C2 ⊆ Aut C121684C12.38D14336,71
C12.39D14 = C3×C7⋊Q16φ: D14/D7C2 ⊆ Aut C123364C12.39D14336,72
C12.40D14 = C3×D42D7φ: D14/D7C2 ⊆ Aut C121684C12.40D14336,179
C12.41D14 = C3×Q8×D7φ: D14/D7C2 ⊆ Aut C121684C12.41D14336,180
C12.42D14 = C3×Q82D7φ: D14/D7C2 ⊆ Aut C121684C12.42D14336,181
C12.43D14 = C8⋊D21φ: D14/C14C2 ⊆ Aut C121682C12.43D14336,92
C12.44D14 = D168φ: D14/C14C2 ⊆ Aut C121682+C12.44D14336,93
C12.45D14 = Dic84φ: D14/C14C2 ⊆ Aut C123362-C12.45D14336,94
C12.46D14 = C2×Dic42φ: D14/C14C2 ⊆ Aut C12336C12.46D14336,194
C12.47D14 = D8411C2φ: D14/C14C2 ⊆ Aut C121682C12.47D14336,197
C12.48D14 = C8×D21φ: D14/C14C2 ⊆ Aut C121682C12.48D14336,90
C12.49D14 = C56⋊S3φ: D14/C14C2 ⊆ Aut C121682C12.49D14336,91
C12.50D14 = C2×C21⋊C8φ: D14/C14C2 ⊆ Aut C12336C12.50D14336,95
C12.51D14 = C84.C4φ: D14/C14C2 ⊆ Aut C121682C12.51D14336,96
C12.52D14 = C3×C56⋊C2φ: D14/C14C2 ⊆ Aut C121682C12.52D14336,60
C12.53D14 = C3×D56φ: D14/C14C2 ⊆ Aut C121682C12.53D14336,61
C12.54D14 = C3×Dic28φ: D14/C14C2 ⊆ Aut C123362C12.54D14336,62
C12.55D14 = C6×Dic14φ: D14/C14C2 ⊆ Aut C12336C12.55D14336,174
C12.56D14 = D7×C24central extension (φ=1)1682C12.56D14336,58
C12.57D14 = C3×C8⋊D7central extension (φ=1)1682C12.57D14336,59
C12.58D14 = C6×C7⋊C8central extension (φ=1)336C12.58D14336,63
C12.59D14 = C3×C4.Dic7central extension (φ=1)1682C12.59D14336,64
C12.60D14 = C3×C4○D28central extension (φ=1)1682C12.60D14336,177

׿
×
𝔽