# Extensions 1→N→G→Q→1 with N=D42 and Q=C22

Direct product G=N×Q with N=D42 and Q=C22
dρLabelID
C23×D21168C2^3xD21336,227

Semidirect products G=N:Q with N=D42 and Q=C22
extensionφ:Q→Out NdρLabelID
D421C22 = D7×D12φ: C22/C1C22 ⊆ Out D42844+D42:1C2^2336,148
D422C22 = S3×D28φ: C22/C1C22 ⊆ Out D42844+D42:2C2^2336,149
D423C22 = D7×C3⋊D4φ: C22/C1C22 ⊆ Out D42844D42:3C2^2336,161
D424C22 = S3×C7⋊D4φ: C22/C1C22 ⊆ Out D42844D42:4C2^2336,162
D425C22 = C2×D84φ: C22/C2C2 ⊆ Out D42168D42:5C2^2336,196
D426C22 = D4×D21φ: C22/C2C2 ⊆ Out D42844+D42:6C2^2336,198
D427C22 = C2×C217D4φ: C22/C2C2 ⊆ Out D42168D42:7C2^2336,203
D428C22 = C2×C3⋊D28φ: C22/C2C2 ⊆ Out D42168D42:8C2^2336,158
D429C22 = C2×C7⋊D12φ: C22/C2C2 ⊆ Out D42168D42:9C2^2336,159
D4210C22 = D6⋊D14φ: C22/C2C2 ⊆ Out D42844+D42:10C2^2336,163
D4211C22 = C22×S3×D7φ: C22/C2C2 ⊆ Out D4284D42:11C2^2336,219

Non-split extensions G=N.Q with N=D42 and Q=C22
extensionφ:Q→Out NdρLabelID
D42.1C22 = D84⋊C2φ: C22/C1C22 ⊆ Out D421684+D42.1C2^2336,142
D42.2C22 = D14.D6φ: C22/C1C22 ⊆ Out D421684+D42.2C2^2336,146
D42.3C22 = Dic7.D6φ: C22/C1C22 ⊆ Out D421684D42.3C2^2336,152
D42.4C22 = Dic3.D14φ: C22/C1C22 ⊆ Out D421684D42.4C2^2336,155
D42.5C22 = D8411C2φ: C22/C2C2 ⊆ Out D421682D42.5C2^2336,197
D42.6C22 = D42D21φ: C22/C2C2 ⊆ Out D421684-D42.6C2^2336,199
D42.7C22 = Q83D21φ: C22/C2C2 ⊆ Out D421684+D42.7C2^2336,201
D42.8C22 = D28⋊S3φ: C22/C2C2 ⊆ Out D421684D42.8C2^2336,139
D42.9C22 = D12⋊D7φ: C22/C2C2 ⊆ Out D421684D42.9C2^2336,141
D42.10C22 = D21⋊Q8φ: C22/C2C2 ⊆ Out D421684D42.10C2^2336,143
D42.11C22 = D6.D14φ: C22/C2C2 ⊆ Out D421684D42.11C2^2336,144
D42.12C22 = C4×S3×D7φ: C22/C2C2 ⊆ Out D42844D42.12C2^2336,147
D42.13C22 = C28⋊D6φ: C22/C2C2 ⊆ Out D42844D42.13C2^2336,150
D42.14C22 = C2×D21⋊C4φ: C22/C2C2 ⊆ Out D42168D42.14C2^2336,156
D42.15C22 = C2×C4×D21φ: trivial image168D42.15C2^2336,195
D42.16C22 = Q8×D21φ: trivial image1684-D42.16C2^2336,200

׿
×
𝔽