extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C2×Dic3) = C32⋊C6⋊C8 | φ: C2×Dic3/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).1(C2xDic3) | 432,76 |
(C3×C6).2(C2×Dic3) = He3⋊M4(2) | φ: C2×Dic3/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).2(C2xDic3) | 432,77 |
(C3×C6).3(C2×Dic3) = He3⋊C42 | φ: C2×Dic3/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).3(C2xDic3) | 432,94 |
(C3×C6).4(C2×Dic3) = C62.D6 | φ: C2×Dic3/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).4(C2xDic3) | 432,95 |
(C3×C6).5(C2×Dic3) = C62.4D6 | φ: C2×Dic3/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).5(C2xDic3) | 432,97 |
(C3×C6).6(C2×Dic3) = C2×He3⋊3C8 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).6(C2xDic3) | 432,136 |
(C3×C6).7(C2×Dic3) = He3⋊7M4(2) | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).7(C2xDic3) | 432,137 |
(C3×C6).8(C2×Dic3) = C4×C32⋊C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).8(C2xDic3) | 432,138 |
(C3×C6).9(C2×Dic3) = C62.20D6 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).9(C2xDic3) | 432,140 |
(C3×C6).10(C2×Dic3) = C2×C9⋊C24 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).10(C2xDic3) | 432,142 |
(C3×C6).11(C2×Dic3) = C36.C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).11(C2xDic3) | 432,143 |
(C3×C6).12(C2×Dic3) = C4×C9⋊C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).12(C2xDic3) | 432,144 |
(C3×C6).13(C2×Dic3) = C36⋊C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).13(C2xDic3) | 432,146 |
(C3×C6).14(C2×Dic3) = C62⋊3C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).14(C2xDic3) | 432,166 |
(C3×C6).15(C2×Dic3) = C62.27D6 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).15(C2xDic3) | 432,167 |
(C3×C6).16(C2×Dic3) = C2×He3⋊4C8 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).16(C2xDic3) | 432,184 |
(C3×C6).17(C2×Dic3) = He3⋊8M4(2) | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).17(C2xDic3) | 432,185 |
(C3×C6).18(C2×Dic3) = C4×He3⋊3C4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).18(C2xDic3) | 432,186 |
(C3×C6).19(C2×Dic3) = C62.30D6 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).19(C2xDic3) | 432,188 |
(C3×C6).20(C2×Dic3) = C62⋊4Dic3 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).20(C2xDic3) | 432,199 |
(C3×C6).21(C2×Dic3) = C22×C9⋊C12 | φ: C2×Dic3/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).21(C2xDic3) | 432,378 |
(C3×C6).22(C2×Dic3) = C33⋊7(C2×C8) | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).22(C2xDic3) | 432,635 |
(C3×C6).23(C2×Dic3) = C33⋊4M4(2) | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).23(C2xDic3) | 432,636 |
(C3×C6).24(C2×Dic3) = C4×C33⋊C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).24(C2xDic3) | 432,637 |
(C3×C6).25(C2×Dic3) = C33⋊9(C4⋊C4) | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).25(C2xDic3) | 432,638 |
(C3×C6).26(C2×Dic3) = C2×C33⋊4C8 | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 48 | | (C3xC6).26(C2xDic3) | 432,639 |
(C3×C6).27(C2×Dic3) = C33⋊12M4(2) | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).27(C2xDic3) | 432,640 |
(C3×C6).28(C2×Dic3) = C62⋊11Dic3 | φ: C2×Dic3/C6 → C4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).28(C2xDic3) | 432,641 |
(C3×C6).29(C2×Dic3) = S3×C9⋊C8 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).29(C2xDic3) | 432,66 |
(C3×C6).30(C2×Dic3) = D6.Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).30(C2xDic3) | 432,67 |
(C3×C6).31(C2×Dic3) = Dic3×Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).31(C2xDic3) | 432,87 |
(C3×C6).32(C2×Dic3) = Dic3⋊Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).32(C2xDic3) | 432,90 |
(C3×C6).33(C2×Dic3) = D6⋊Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).33(C2xDic3) | 432,93 |
(C3×C6).34(C2×Dic3) = C2×S3×Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).34(C2xDic3) | 432,308 |
(C3×C6).35(C2×Dic3) = S3×C32⋊4C8 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).35(C2xDic3) | 432,430 |
(C3×C6).36(C2×Dic3) = C33⋊7M4(2) | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).36(C2xDic3) | 432,433 |
(C3×C6).37(C2×Dic3) = Dic3×C3⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).37(C2xDic3) | 432,448 |
(C3×C6).38(C2×Dic3) = C62.77D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).38(C2xDic3) | 432,449 |
(C3×C6).39(C2×Dic3) = C62.80D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).39(C2xDic3) | 432,452 |
(C3×C6).40(C2×Dic3) = C12.93S32 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).40(C2xDic3) | 432,455 |
(C3×C6).41(C2×Dic3) = C33⋊10M4(2) | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).41(C2xDic3) | 432,456 |
(C3×C6).42(C2×Dic3) = C33⋊6C42 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).42(C2xDic3) | 432,460 |
(C3×C6).43(C2×Dic3) = C62.84D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).43(C2xDic3) | 432,461 |
(C3×C6).44(C2×Dic3) = C62.85D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).44(C2xDic3) | 432,462 |
(C3×C6).45(C2×Dic3) = C3×S3×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).45(C2xDic3) | 432,414 |
(C3×C6).46(C2×Dic3) = C3×D6.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).46(C2xDic3) | 432,416 |
(C3×C6).47(C2×Dic3) = C3×Dic32 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).47(C2xDic3) | 432,425 |
(C3×C6).48(C2×Dic3) = C3×D6⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).48(C2xDic3) | 432,426 |
(C3×C6).49(C2×Dic3) = C3×Dic3⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).49(C2xDic3) | 432,428 |
(C3×C6).50(C2×Dic3) = C3⋊S3×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).50(C2xDic3) | 432,431 |
(C3×C6).51(C2×Dic3) = C33⋊8M4(2) | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).51(C2xDic3) | 432,434 |
(C3×C6).52(C2×Dic3) = C62.78D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).52(C2xDic3) | 432,450 |
(C3×C6).53(C2×Dic3) = C62.82D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).53(C2xDic3) | 432,454 |
(C3×C6).54(C2×Dic3) = C6×C9⋊C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).54(C2xDic3) | 432,124 |
(C3×C6).55(C2×Dic3) = C3×C4.Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).55(C2xDic3) | 432,125 |
(C3×C6).56(C2×Dic3) = C12×Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).56(C2xDic3) | 432,128 |
(C3×C6).57(C2×Dic3) = C3×C4⋊Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).57(C2xDic3) | 432,130 |
(C3×C6).58(C2×Dic3) = C3×C18.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).58(C2xDic3) | 432,164 |
(C3×C6).59(C2×Dic3) = C2×C36.S3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).59(C2xDic3) | 432,178 |
(C3×C6).60(C2×Dic3) = C36.69D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).60(C2xDic3) | 432,179 |
(C3×C6).61(C2×Dic3) = C4×C9⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).61(C2xDic3) | 432,180 |
(C3×C6).62(C2×Dic3) = C36⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).62(C2xDic3) | 432,182 |
(C3×C6).63(C2×Dic3) = C62.127D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).63(C2xDic3) | 432,198 |
(C3×C6).64(C2×Dic3) = C2×C6×Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).64(C2xDic3) | 432,372 |
(C3×C6).65(C2×Dic3) = C22×C9⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).65(C2xDic3) | 432,396 |
(C3×C6).66(C2×Dic3) = C6×C32⋊4C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).66(C2xDic3) | 432,485 |
(C3×C6).67(C2×Dic3) = C3×C12.58D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).67(C2xDic3) | 432,486 |
(C3×C6).68(C2×Dic3) = C12×C3⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).68(C2xDic3) | 432,487 |
(C3×C6).69(C2×Dic3) = C3×C12⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).69(C2xDic3) | 432,489 |
(C3×C6).70(C2×Dic3) = C3×C62⋊5C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).70(C2xDic3) | 432,495 |
(C3×C6).71(C2×Dic3) = C2×C33⋊7C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).71(C2xDic3) | 432,501 |
(C3×C6).72(C2×Dic3) = C33⋊18M4(2) | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).72(C2xDic3) | 432,502 |
(C3×C6).73(C2×Dic3) = C4×C33⋊5C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).73(C2xDic3) | 432,503 |
(C3×C6).74(C2×Dic3) = C62.147D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).74(C2xDic3) | 432,505 |
(C3×C6).75(C2×Dic3) = C63.C2 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).75(C2xDic3) | 432,511 |
(C3×C6).76(C2×Dic3) = C3×C6×C3⋊C8 | central extension (φ=1) | 144 | | (C3xC6).76(C2xDic3) | 432,469 |
(C3×C6).77(C2×Dic3) = C32×C4.Dic3 | central extension (φ=1) | 72 | | (C3xC6).77(C2xDic3) | 432,470 |
(C3×C6).78(C2×Dic3) = Dic3×C3×C12 | central extension (φ=1) | 144 | | (C3xC6).78(C2xDic3) | 432,471 |
(C3×C6).79(C2×Dic3) = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | (C3xC6).79(C2xDic3) | 432,473 |
(C3×C6).80(C2×Dic3) = C32×C6.D4 | central extension (φ=1) | 72 | | (C3xC6).80(C2xDic3) | 432,479 |