Extensions 1→N→G→Q→1 with N=C3×C6 and Q=C2×Dic3

Direct product G=N×Q with N=C3×C6 and Q=C2×Dic3
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C3×C6 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊(C2×Dic3) = C2×C6.S32φ: C2×Dic3/C2D6 ⊆ Aut C3×C672(C3xC6):(C2xDic3)432,317
(C3×C6)⋊2(C2×Dic3) = C22×C32⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6):2(C2xDic3)432,376
(C3×C6)⋊3(C2×Dic3) = C22×He33C4φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6):3(C2xDic3)432,398
(C3×C6)⋊4(C2×Dic3) = C22×C33⋊C4φ: C2×Dic3/C6C4 ⊆ Aut C3×C648(C3xC6):4(C2xDic3)432,766
(C3×C6)⋊5(C2×Dic3) = C2×S3×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6):5(C2xDic3)432,674
(C3×C6)⋊6(C2×Dic3) = C2×C339(C2×C4)φ: C2×Dic3/C6C22 ⊆ Aut C3×C648(C3xC6):6(C2xDic3)432,692
(C3×C6)⋊7(C2×Dic3) = S3×C6×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C648(C3xC6):7(C2xDic3)432,651
(C3×C6)⋊8(C2×Dic3) = C2×Dic3×C3⋊S3φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6144(C3xC6):8(C2xDic3)432,677
(C3×C6)⋊9(C2×Dic3) = C2×C6×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6):9(C2xDic3)432,718
(C3×C6)⋊10(C2×Dic3) = C22×C335C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6):10(C2xDic3)432,728

Non-split extensions G=N.Q with N=C3×C6 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
(C3×C6).1(C2×Dic3) = C32⋊C6⋊C8φ: C2×Dic3/C2D6 ⊆ Aut C3×C6726(C3xC6).1(C2xDic3)432,76
(C3×C6).2(C2×Dic3) = He3⋊M4(2)φ: C2×Dic3/C2D6 ⊆ Aut C3×C6726(C3xC6).2(C2xDic3)432,77
(C3×C6).3(C2×Dic3) = He3⋊C42φ: C2×Dic3/C2D6 ⊆ Aut C3×C6144(C3xC6).3(C2xDic3)432,94
(C3×C6).4(C2×Dic3) = C62.D6φ: C2×Dic3/C2D6 ⊆ Aut C3×C6144(C3xC6).4(C2xDic3)432,95
(C3×C6).5(C2×Dic3) = C62.4D6φ: C2×Dic3/C2D6 ⊆ Aut C3×C672(C3xC6).5(C2xDic3)432,97
(C3×C6).6(C2×Dic3) = C2×He33C8φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).6(C2xDic3)432,136
(C3×C6).7(C2×Dic3) = He37M4(2)φ: C2×Dic3/C22S3 ⊆ Aut C3×C6726(C3xC6).7(C2xDic3)432,137
(C3×C6).8(C2×Dic3) = C4×C32⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).8(C2xDic3)432,138
(C3×C6).9(C2×Dic3) = C62.20D6φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).9(C2xDic3)432,140
(C3×C6).10(C2×Dic3) = C2×C9⋊C24φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).10(C2xDic3)432,142
(C3×C6).11(C2×Dic3) = C36.C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C6726(C3xC6).11(C2xDic3)432,143
(C3×C6).12(C2×Dic3) = C4×C9⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).12(C2xDic3)432,144
(C3×C6).13(C2×Dic3) = C36⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).13(C2xDic3)432,146
(C3×C6).14(C2×Dic3) = C623C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C672(C3xC6).14(C2xDic3)432,166
(C3×C6).15(C2×Dic3) = C62.27D6φ: C2×Dic3/C22S3 ⊆ Aut C3×C672(C3xC6).15(C2xDic3)432,167
(C3×C6).16(C2×Dic3) = C2×He34C8φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).16(C2xDic3)432,184
(C3×C6).17(C2×Dic3) = He38M4(2)φ: C2×Dic3/C22S3 ⊆ Aut C3×C6726(C3xC6).17(C2xDic3)432,185
(C3×C6).18(C2×Dic3) = C4×He33C4φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).18(C2xDic3)432,186
(C3×C6).19(C2×Dic3) = C62.30D6φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).19(C2xDic3)432,188
(C3×C6).20(C2×Dic3) = C624Dic3φ: C2×Dic3/C22S3 ⊆ Aut C3×C672(C3xC6).20(C2xDic3)432,199
(C3×C6).21(C2×Dic3) = C22×C9⋊C12φ: C2×Dic3/C22S3 ⊆ Aut C3×C6144(C3xC6).21(C2xDic3)432,378
(C3×C6).22(C2×Dic3) = C337(C2×C8)φ: C2×Dic3/C6C4 ⊆ Aut C3×C6484(C3xC6).22(C2xDic3)432,635
(C3×C6).23(C2×Dic3) = C334M4(2)φ: C2×Dic3/C6C4 ⊆ Aut C3×C6484(C3xC6).23(C2xDic3)432,636
(C3×C6).24(C2×Dic3) = C4×C33⋊C4φ: C2×Dic3/C6C4 ⊆ Aut C3×C6484(C3xC6).24(C2xDic3)432,637
(C3×C6).25(C2×Dic3) = C339(C4⋊C4)φ: C2×Dic3/C6C4 ⊆ Aut C3×C6484(C3xC6).25(C2xDic3)432,638
(C3×C6).26(C2×Dic3) = C2×C334C8φ: C2×Dic3/C6C4 ⊆ Aut C3×C648(C3xC6).26(C2xDic3)432,639
(C3×C6).27(C2×Dic3) = C3312M4(2)φ: C2×Dic3/C6C4 ⊆ Aut C3×C6244(C3xC6).27(C2xDic3)432,640
(C3×C6).28(C2×Dic3) = C6211Dic3φ: C2×Dic3/C6C4 ⊆ Aut C3×C6244(C3xC6).28(C2xDic3)432,641
(C3×C6).29(C2×Dic3) = S3×C9⋊C8φ: C2×Dic3/C6C22 ⊆ Aut C3×C61444(C3xC6).29(C2xDic3)432,66
(C3×C6).30(C2×Dic3) = D6.Dic9φ: C2×Dic3/C6C22 ⊆ Aut C3×C61444(C3xC6).30(C2xDic3)432,67
(C3×C6).31(C2×Dic3) = Dic3×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).31(C2xDic3)432,87
(C3×C6).32(C2×Dic3) = Dic3⋊Dic9φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).32(C2xDic3)432,90
(C3×C6).33(C2×Dic3) = D6⋊Dic9φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).33(C2xDic3)432,93
(C3×C6).34(C2×Dic3) = C2×S3×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).34(C2xDic3)432,308
(C3×C6).35(C2×Dic3) = S3×C324C8φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).35(C2xDic3)432,430
(C3×C6).36(C2×Dic3) = C337M4(2)φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).36(C2xDic3)432,433
(C3×C6).37(C2×Dic3) = Dic3×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).37(C2xDic3)432,448
(C3×C6).38(C2×Dic3) = C62.77D6φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).38(C2xDic3)432,449
(C3×C6).39(C2×Dic3) = C62.80D6φ: C2×Dic3/C6C22 ⊆ Aut C3×C6144(C3xC6).39(C2xDic3)432,452
(C3×C6).40(C2×Dic3) = C12.93S32φ: C2×Dic3/C6C22 ⊆ Aut C3×C6484(C3xC6).40(C2xDic3)432,455
(C3×C6).41(C2×Dic3) = C3310M4(2)φ: C2×Dic3/C6C22 ⊆ Aut C3×C6484(C3xC6).41(C2xDic3)432,456
(C3×C6).42(C2×Dic3) = C336C42φ: C2×Dic3/C6C22 ⊆ Aut C3×C648(C3xC6).42(C2xDic3)432,460
(C3×C6).43(C2×Dic3) = C62.84D6φ: C2×Dic3/C6C22 ⊆ Aut C3×C648(C3xC6).43(C2xDic3)432,461
(C3×C6).44(C2×Dic3) = C62.85D6φ: C2×Dic3/C6C22 ⊆ Aut C3×C648(C3xC6).44(C2xDic3)432,462
(C3×C6).45(C2×Dic3) = C3×S3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6484(C3xC6).45(C2xDic3)432,414
(C3×C6).46(C2×Dic3) = C3×D6.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6484(C3xC6).46(C2xDic3)432,416
(C3×C6).47(C2×Dic3) = C3×Dic32φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C648(C3xC6).47(C2xDic3)432,425
(C3×C6).48(C2×Dic3) = C3×D6⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C648(C3xC6).48(C2xDic3)432,426
(C3×C6).49(C2×Dic3) = C3×Dic3⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C648(C3xC6).49(C2xDic3)432,428
(C3×C6).50(C2×Dic3) = C3⋊S3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6144(C3xC6).50(C2xDic3)432,431
(C3×C6).51(C2×Dic3) = C338M4(2)φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6144(C3xC6).51(C2xDic3)432,434
(C3×C6).52(C2×Dic3) = C62.78D6φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6144(C3xC6).52(C2xDic3)432,450
(C3×C6).53(C2×Dic3) = C62.82D6φ: C2×Dic3/Dic3C2 ⊆ Aut C3×C6144(C3xC6).53(C2xDic3)432,454
(C3×C6).54(C2×Dic3) = C6×C9⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).54(C2xDic3)432,124
(C3×C6).55(C2×Dic3) = C3×C4.Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6722(C3xC6).55(C2xDic3)432,125
(C3×C6).56(C2×Dic3) = C12×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).56(C2xDic3)432,128
(C3×C6).57(C2×Dic3) = C3×C4⋊Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).57(C2xDic3)432,130
(C3×C6).58(C2×Dic3) = C3×C18.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C672(C3xC6).58(C2xDic3)432,164
(C3×C6).59(C2×Dic3) = C2×C36.S3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).59(C2xDic3)432,178
(C3×C6).60(C2×Dic3) = C36.69D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6216(C3xC6).60(C2xDic3)432,179
(C3×C6).61(C2×Dic3) = C4×C9⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).61(C2xDic3)432,180
(C3×C6).62(C2×Dic3) = C36⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).62(C2xDic3)432,182
(C3×C6).63(C2×Dic3) = C62.127D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6216(C3xC6).63(C2xDic3)432,198
(C3×C6).64(C2×Dic3) = C2×C6×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).64(C2xDic3)432,372
(C3×C6).65(C2×Dic3) = C22×C9⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).65(C2xDic3)432,396
(C3×C6).66(C2×Dic3) = C6×C324C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).66(C2xDic3)432,485
(C3×C6).67(C2×Dic3) = C3×C12.58D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C672(C3xC6).67(C2xDic3)432,486
(C3×C6).68(C2×Dic3) = C12×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).68(C2xDic3)432,487
(C3×C6).69(C2×Dic3) = C3×C12⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6144(C3xC6).69(C2xDic3)432,489
(C3×C6).70(C2×Dic3) = C3×C625C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C672(C3xC6).70(C2xDic3)432,495
(C3×C6).71(C2×Dic3) = C2×C337C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).71(C2xDic3)432,501
(C3×C6).72(C2×Dic3) = C3318M4(2)φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6216(C3xC6).72(C2xDic3)432,502
(C3×C6).73(C2×Dic3) = C4×C335C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).73(C2xDic3)432,503
(C3×C6).74(C2×Dic3) = C62.147D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6432(C3xC6).74(C2xDic3)432,505
(C3×C6).75(C2×Dic3) = C63.C2φ: C2×Dic3/C2×C6C2 ⊆ Aut C3×C6216(C3xC6).75(C2xDic3)432,511
(C3×C6).76(C2×Dic3) = C3×C6×C3⋊C8central extension (φ=1)144(C3xC6).76(C2xDic3)432,469
(C3×C6).77(C2×Dic3) = C32×C4.Dic3central extension (φ=1)72(C3xC6).77(C2xDic3)432,470
(C3×C6).78(C2×Dic3) = Dic3×C3×C12central extension (φ=1)144(C3xC6).78(C2xDic3)432,471
(C3×C6).79(C2×Dic3) = C32×C4⋊Dic3central extension (φ=1)144(C3xC6).79(C2xDic3)432,473
(C3×C6).80(C2×Dic3) = C32×C6.D4central extension (φ=1)72(C3xC6).80(C2xDic3)432,479

׿
×
𝔽