extension | φ:Q→Aut N | d | ρ | Label | ID |
C24.1(C3xS3) = C3xDic36 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.1(C3xS3) | 432,104 |
C24.2(C3xS3) = C3xD72 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.2(C3xS3) | 432,108 |
C24.3(C3xS3) = He3:4Q16 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 6- | C24.3(C3xS3) | 432,114 |
C24.4(C3xS3) = He3:4D8 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6+ | C24.4(C3xS3) | 432,118 |
C24.5(C3xS3) = C72.C6 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 6- | C24.5(C3xS3) | 432,119 |
C24.6(C3xS3) = D72:C3 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6+ | C24.6(C3xS3) | 432,123 |
C24.7(C3xS3) = C3xC32:5Q16 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | | C24.7(C3xS3) | 432,484 |
C24.8(C3xS3) = C3xC72:C2 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.8(C3xS3) | 432,107 |
C24.9(C3xS3) = He3:6SD16 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.9(C3xS3) | 432,117 |
C24.10(C3xS3) = C72:2C6 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.10(C3xS3) | 432,122 |
C24.11(C3xS3) = C9xD24 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.11(C3xS3) | 432,112 |
C24.12(C3xS3) = C9xDic12 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.12(C3xS3) | 432,113 |
C24.13(C3xS3) = C32xDic12 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | | C24.13(C3xS3) | 432,468 |
C24.14(C3xS3) = C3xC9:C16 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.14(C3xS3) | 432,28 |
C24.15(C3xS3) = He3:3C16 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 6 | C24.15(C3xS3) | 432,30 |
C24.16(C3xS3) = C9:C48 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 6 | C24.16(C3xS3) | 432,31 |
C24.17(C3xS3) = D9xC24 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.17(C3xS3) | 432,105 |
C24.18(C3xS3) = C3xC8:D9 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.18(C3xS3) | 432,106 |
C24.19(C3xS3) = C8xC32:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.19(C3xS3) | 432,115 |
C24.20(C3xS3) = He3:5M4(2) | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.20(C3xS3) | 432,116 |
C24.21(C3xS3) = C8xC9:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.21(C3xS3) | 432,120 |
C24.22(C3xS3) = C72:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 72 | 6 | C24.22(C3xS3) | 432,121 |
C24.23(C3xS3) = C3xC24.S3 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | | C24.23(C3xS3) | 432,230 |
C24.24(C3xS3) = C9xC24:C2 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.24(C3xS3) | 432,111 |
C24.25(C3xS3) = C9xC8:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C24 | 144 | 2 | C24.25(C3xS3) | 432,110 |
C24.26(C3xS3) = C9xC3:C16 | central extension (φ=1) | 144 | 2 | C24.26(C3xS3) | 432,29 |
C24.27(C3xS3) = S3xC72 | central extension (φ=1) | 144 | 2 | C24.27(C3xS3) | 432,109 |
C24.28(C3xS3) = C32xC3:C16 | central extension (φ=1) | 144 | | C24.28(C3xS3) | 432,229 |