extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18).1D4 = D36.S3 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).1D4 | 432,62 |
(C3×C18).2D4 = C6.D36 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).2D4 | 432,63 |
(C3×C18).3D4 = C3⋊D72 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).3D4 | 432,64 |
(C3×C18).4D4 = C3⋊Dic36 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).4D4 | 432,65 |
(C3×C18).5D4 = D36⋊S3 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).5D4 | 432,68 |
(C3×C18).6D4 = C9⋊D24 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).6D4 | 432,69 |
(C3×C18).7D4 = D12.D9 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).7D4 | 432,70 |
(C3×C18).8D4 = C36.D6 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).8D4 | 432,71 |
(C3×C18).9D4 = Dic6⋊D9 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).9D4 | 432,72 |
(C3×C18).10D4 = C18.D12 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).10D4 | 432,73 |
(C3×C18).11D4 = C12.D18 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).11D4 | 432,74 |
(C3×C18).12D4 = C9⋊Dic12 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).12D4 | 432,75 |
(C3×C18).13D4 = Dic9⋊Dic3 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).13D4 | 432,88 |
(C3×C18).14D4 = C18.Dic6 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).14D4 | 432,89 |
(C3×C18).15D4 = Dic3⋊Dic9 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).15D4 | 432,90 |
(C3×C18).16D4 = D18⋊Dic3 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).16D4 | 432,91 |
(C3×C18).17D4 = C6.18D36 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 72 | | (C3xC18).17D4 | 432,92 |
(C3×C18).18D4 = D6⋊Dic9 | φ: D4/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).18D4 | 432,93 |
(C3×C18).19D4 = C9×C24⋊C2 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | 2 | (C3xC18).19D4 | 432,111 |
(C3×C18).20D4 = C9×D24 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | 2 | (C3xC18).20D4 | 432,112 |
(C3×C18).21D4 = C9×Dic12 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | 2 | (C3xC18).21D4 | 432,113 |
(C3×C18).22D4 = C9×C4⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).22D4 | 432,133 |
(C3×C18).23D4 = C9×D6⋊C4 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).23D4 | 432,135 |
(C3×C18).24D4 = C3×Dic36 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | 2 | (C3xC18).24D4 | 432,104 |
(C3×C18).25D4 = C3×C72⋊C2 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | 2 | (C3xC18).25D4 | 432,107 |
(C3×C18).26D4 = C3×D72 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | 2 | (C3xC18).26D4 | 432,108 |
(C3×C18).27D4 = C3×C4⋊Dic9 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).27D4 | 432,130 |
(C3×C18).28D4 = C3×D18⋊C4 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).28D4 | 432,134 |
(C3×C18).29D4 = C24.D9 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 432 | | (C3xC18).29D4 | 432,168 |
(C3×C18).30D4 = C24⋊D9 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).30D4 | 432,171 |
(C3×C18).31D4 = C72⋊1S3 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).31D4 | 432,172 |
(C3×C18).32D4 = C36⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C3×C18 | 432 | | (C3xC18).32D4 | 432,182 |
(C3×C18).33D4 = C9×Dic3⋊C4 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).33D4 | 432,132 |
(C3×C18).34D4 = C9×D4⋊S3 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).34D4 | 432,150 |
(C3×C18).35D4 = C9×D4.S3 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).35D4 | 432,151 |
(C3×C18).36D4 = C9×Q8⋊2S3 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).36D4 | 432,158 |
(C3×C18).37D4 = C9×C3⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).37D4 | 432,159 |
(C3×C18).38D4 = C9×C6.D4 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 72 | | (C3xC18).38D4 | 432,165 |
(C3×C18).39D4 = C3×Dic9⋊C4 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).39D4 | 432,129 |
(C3×C18).40D4 = C3×D4.D9 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).40D4 | 432,148 |
(C3×C18).41D4 = C3×D4⋊D9 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).41D4 | 432,149 |
(C3×C18).42D4 = C3×C9⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).42D4 | 432,156 |
(C3×C18).43D4 = C3×Q8⋊2D9 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).43D4 | 432,157 |
(C3×C18).44D4 = C3×C18.D4 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 72 | | (C3xC18).44D4 | 432,164 |
(C3×C18).45D4 = C6.Dic18 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 432 | | (C3xC18).45D4 | 432,181 |
(C3×C18).46D4 = C6.11D36 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).46D4 | 432,183 |
(C3×C18).47D4 = C36.17D6 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).47D4 | 432,190 |
(C3×C18).48D4 = C36.18D6 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).48D4 | 432,191 |
(C3×C18).49D4 = C36.19D6 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 432 | | (C3xC18).49D4 | 432,194 |
(C3×C18).50D4 = C36.20D6 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).50D4 | 432,195 |
(C3×C18).51D4 = C62.127D6 | φ: D4/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).51D4 | 432,198 |
(C3×C18).52D4 = C22⋊C4×C3×C9 | central extension (φ=1) | 216 | | (C3xC18).52D4 | 432,203 |
(C3×C18).53D4 = C4⋊C4×C3×C9 | central extension (φ=1) | 432 | | (C3xC18).53D4 | 432,206 |
(C3×C18).54D4 = D8×C3×C9 | central extension (φ=1) | 216 | | (C3xC18).54D4 | 432,215 |
(C3×C18).55D4 = SD16×C3×C9 | central extension (φ=1) | 216 | | (C3xC18).55D4 | 432,218 |
(C3×C18).56D4 = Q16×C3×C9 | central extension (φ=1) | 432 | | (C3xC18).56D4 | 432,221 |