# Extensions 1→N→G→Q→1 with N=C22 and Q=S3×D9

Direct product G=N×Q with N=C22 and Q=S3×D9
dρLabelID
C22×S3×D972C2^2xS3xD9432,544

Semidirect products G=N:Q with N=C22 and Q=S3×D9
extensionφ:Q→Aut NdρLabelID
C221(S3×D9) = D9×S4φ: S3×D9/D9S3 ⊆ Aut C22366+C2^2:1(S3xD9)432,521
C222(S3×D9) = S3×C3.S4φ: S3×D9/C3×S3S3 ⊆ Aut C223612+C2^2:2(S3xD9)432,522
C223(S3×D9) = D9×C3⋊D4φ: S3×D9/C3×D9C2 ⊆ Aut C22724C2^2:3(S3xD9)432,314
C224(S3×D9) = S3×C9⋊D4φ: S3×D9/S3×C9C2 ⊆ Aut C22724C2^2:4(S3xD9)432,313
C225(S3×D9) = D18⋊D6φ: S3×D9/C9⋊S3C2 ⊆ Aut C22364+C2^2:5(S3xD9)432,315

Non-split extensions G=N.Q with N=C22 and Q=S3×D9
extensionφ:Q→Aut NdρLabelID
C22.1(S3×D9) = Dic3.D18φ: S3×D9/C3×D9C2 ⊆ Aut C22724C2^2.1(S3xD9)432,309
C22.2(S3×D9) = D18.3D6φ: S3×D9/S3×C9C2 ⊆ Aut C22724C2^2.2(S3xD9)432,305
C22.3(S3×D9) = D18.4D6φ: S3×D9/C9⋊S3C2 ⊆ Aut C22724-C2^2.3(S3xD9)432,310
C22.4(S3×D9) = Dic3×Dic9central extension (φ=1)144C2^2.4(S3xD9)432,87
C22.5(S3×D9) = Dic9⋊Dic3central extension (φ=1)144C2^2.5(S3xD9)432,88
C22.6(S3×D9) = C18.Dic6central extension (φ=1)144C2^2.6(S3xD9)432,89
C22.7(S3×D9) = Dic3⋊Dic9central extension (φ=1)144C2^2.7(S3xD9)432,90
C22.8(S3×D9) = D18⋊Dic3central extension (φ=1)144C2^2.8(S3xD9)432,91
C22.9(S3×D9) = C6.18D36central extension (φ=1)72C2^2.9(S3xD9)432,92
C22.10(S3×D9) = D6⋊Dic9central extension (φ=1)144C2^2.10(S3xD9)432,93
C22.11(S3×D9) = C2×C9⋊Dic6central extension (φ=1)144C2^2.11(S3xD9)432,303
C22.12(S3×D9) = C2×Dic3×D9central extension (φ=1)144C2^2.12(S3xD9)432,304
C22.13(S3×D9) = C2×C18.D6central extension (φ=1)72C2^2.13(S3xD9)432,306
C22.14(S3×D9) = C2×C3⋊D36central extension (φ=1)72C2^2.14(S3xD9)432,307
C22.15(S3×D9) = C2×S3×Dic9central extension (φ=1)144C2^2.15(S3xD9)432,308
C22.16(S3×D9) = C2×D6⋊D9central extension (φ=1)144C2^2.16(S3xD9)432,311
C22.17(S3×D9) = C2×C9⋊D12central extension (φ=1)72C2^2.17(S3xD9)432,312

׿
×
𝔽