direct product, non-abelian, soluble, monomial
Aliases: S3xC3.S4, C62.17D6, (C2xC6):D18, (C3xS3).S4, C3.3(S3xS4), C3.A4:1D6, (C22xS3):D9, C22:2(S3xD9), C32.3S4:C2, C32.2(C2xS4), (S3xC2xC6).S3, (C3xC3.S4):C2, (S3xC3.A4):C2, (C2xC6).3S32, C3:1(C2xC3.S4), (C3xC3.A4):C22, SmallGroup(432,522)
Series: Derived ►Chief ►Lower central ►Upper central
C3xC3.A4 — S3xC3.S4 |
Generators and relations for S3xC3.S4
G = < a,b,c,d,e,f,g | a3=b2=c3=d2=e2=g2=1, f3=c, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg=c-1, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=c-1f2 >
Subgroups: 1120 in 123 conjugacy classes, 19 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, S3, C6, C2xC4, D4, C23, C9, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xD4, D9, C18, C3xS3, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C3:D4, C3xD4, C22xS3, C22xS3, C22xC6, C3xC9, C3.A4, C3.A4, D18, C3xDic3, C3:Dic3, S32, S3xC6, C2xC3:S3, C62, S3xD4, C2xC3:D4, C3xD9, S3xC9, C9:S3, C3.S4, C3.S4, C2xC3.A4, S3xDic3, D6:S3, C3:D12, C3xC3:D4, C32:7D4, C2xS32, S3xC2xC6, S3xD9, C3xC3.A4, C2xC3.S4, S3xC3:D4, C3xC3.S4, C32.3S4, S3xC3.A4, S3xC3.S4
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, S32, C2xS4, C3.S4, S3xD9, C2xC3.S4, S3xS4, S3xC3.S4
Character table of S3xC3.S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 9A | 9B | 9C | 9D | 9E | 9F | 12 | 18A | 18B | 18C | |
size | 1 | 3 | 3 | 9 | 18 | 54 | 2 | 2 | 4 | 18 | 54 | 6 | 6 | 6 | 12 | 18 | 36 | 8 | 8 | 8 | 16 | 16 | 16 | 36 | 24 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -2 | 0 | -1 | 2 | -1 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 1 | 2 | 2 | 2 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | 0 | 2 | 0 | -1 | 2 | -1 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 2 | -1 | -1 | 1 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 0 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 2 | -1 | -1 | 1 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 0 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 2 | -1 | -1 | 1 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 0 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 3 | -1 | 3 | -1 | -1 | -1 | 3 | 3 | 3 | 1 | 1 | 3 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ16 | 3 | -1 | 3 | -1 | 1 | 1 | 3 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ17 | 3 | -1 | -3 | 1 | -1 | 1 | 3 | 3 | 3 | 1 | -1 | -3 | -1 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ18 | 3 | -1 | -3 | 1 | 1 | -1 | 3 | 3 | 3 | -1 | 1 | -3 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ20 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD9 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD9 |
ρ22 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD9 |
ρ23 | 6 | -2 | 0 | 0 | -2 | 0 | -3 | 6 | -3 | 2 | 0 | 0 | 1 | -2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from S3xS4 |
ρ24 | 6 | -2 | 6 | -2 | 0 | 0 | 6 | -3 | -3 | 0 | 0 | -3 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
ρ25 | 6 | -2 | 0 | 0 | 2 | 0 | -3 | 6 | -3 | -2 | 0 | 0 | 1 | -2 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | orthogonal lifted from S3xS4 |
ρ26 | 6 | -2 | -6 | 2 | 0 | 0 | 6 | -3 | -3 | 0 | 0 | 3 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xC3.S4 |
ρ27 | 12 | -4 | 0 | 0 | 0 | 0 | -6 | -6 | 3 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 28)(10 27)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 27)(2 19)(4 21)(5 22)(7 24)(8 25)(10 29)(11 30)(13 32)(14 33)(16 35)(17 36)
(2 19)(3 20)(5 22)(6 23)(8 25)(9 26)(11 30)(12 31)(14 33)(15 34)(17 36)(18 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 29)(2 28)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)
G:=sub<Sym(36)| (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,28)(10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,27)(2,19)(4,21)(5,22)(7,24)(8,25)(10,29)(11,30)(13,32)(14,33)(16,35)(17,36), (2,19)(3,20)(5,22)(6,23)(8,25)(9,26)(11,30)(12,31)(14,33)(15,34)(17,36)(18,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,29)(2,28)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;
G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,28)(10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,27)(2,19)(4,21)(5,22)(7,24)(8,25)(10,29)(11,30)(13,32)(14,33)(16,35)(17,36), (2,19)(3,20)(5,22)(6,23)(8,25)(9,26)(11,30)(12,31)(14,33)(15,34)(17,36)(18,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,29)(2,28)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );
G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,28),(10,27),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,27),(2,19),(4,21),(5,22),(7,24),(8,25),(10,29),(11,30),(13,32),(14,33),(16,35),(17,36)], [(2,19),(3,20),(5,22),(6,23),(8,25),(9,26),(11,30),(12,31),(14,33),(15,34),(17,36),(18,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,29),(2,28),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])
Matrix representation of S3xC3.S4 ►in GL7(F37)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 19 | 0 | 0 | 0 | 0 | 0 |
35 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 36 |
6 | 13 | 0 | 0 | 0 | 0 | 0 |
22 | 17 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 36 | 35 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
35 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 36 | 35 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,1,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,35,0,0,0,0,0,19,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,1,0,0,0,0,0,36,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,36,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[6,22,0,0,0,0,0,13,17,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,1,0,0,0,0,0,36,0,0,0,0,0,0,35,0,1],[1,35,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,36,0,0,0,0,0,0,35,1] >;
S3xC3.S4 in GAP, Magma, Sage, TeX
S_3\times C_3.S_4
% in TeX
G:=Group("S3xC3.S4");
// GroupNames label
G:=SmallGroup(432,522);
// by ID
G=gap.SmallGroup(432,522);
# by ID
G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,471,394,675,1271,4548,2287,2659,3989]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^3=d^2=e^2=g^2=1,f^3=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g=c^-1,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=c^-1*f^2>;
// generators/relations
Export