Copied to
clipboard

G = S3xC3.S4order 432 = 24·33

Direct product of S3 and C3.S4

direct product, non-abelian, soluble, monomial

Aliases: S3xC3.S4, C62.17D6, (C2xC6):D18, (C3xS3).S4, C3.3(S3xS4), C3.A4:1D6, (C22xS3):D9, C22:2(S3xD9), C32.3S4:C2, C32.2(C2xS4), (S3xC2xC6).S3, (C3xC3.S4):C2, (S3xC3.A4):C2, (C2xC6).3S32, C3:1(C2xC3.S4), (C3xC3.A4):C22, SmallGroup(432,522)

Series: Derived Chief Lower central Upper central

C1C22C3xC3.A4 — S3xC3.S4
C1C22C2xC6C62C3xC3.A4S3xC3.A4 — S3xC3.S4
C3xC3.A4 — S3xC3.S4
C1

Generators and relations for S3xC3.S4
 G = < a,b,c,d,e,f,g | a3=b2=c3=d2=e2=g2=1, f3=c, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg=c-1, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=c-1f2 >

Subgroups: 1120 in 123 conjugacy classes, 19 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, S3, C6, C2xC4, D4, C23, C9, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xD4, D9, C18, C3xS3, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C3:D4, C3xD4, C22xS3, C22xS3, C22xC6, C3xC9, C3.A4, C3.A4, D18, C3xDic3, C3:Dic3, S32, S3xC6, C2xC3:S3, C62, S3xD4, C2xC3:D4, C3xD9, S3xC9, C9:S3, C3.S4, C3.S4, C2xC3.A4, S3xDic3, D6:S3, C3:D12, C3xC3:D4, C32:7D4, C2xS32, S3xC2xC6, S3xD9, C3xC3.A4, C2xC3.S4, S3xC3:D4, C3xC3.S4, C32.3S4, S3xC3.A4, S3xC3.S4
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, S32, C2xS4, C3.S4, S3xD9, C2xC3.S4, S3xS4, S3xC3.S4

Character table of S3xC3.S4

 class 12A2B2C2D2E3A3B3C4A4B6A6B6C6D6E6F9A9B9C9D9E9F1218A18B18C
 size 13391854224185466612183688816161636242424
ρ1111111111111111111111111111    trivial
ρ21111-1-1111-1-111111-1111111-1111    linear of order 2
ρ311-1-11-11111-1-1111-111111111-1-1-1    linear of order 2
ρ411-1-1-11111-11-1111-1-1111111-1-1-1-1    linear of order 2
ρ52200-20-12-1-200-12-101222-1-1-11000    orthogonal lifted from D6
ρ6220020-12-1200-12-10-1222-1-1-1-1000    orthogonal lifted from S3
ρ722220022200222220-1-1-1-1-1-10-1-1-1    orthogonal lifted from S3
ρ822-2-20022200-2222-20-1-1-1-1-1-10111    orthogonal lifted from D6
ρ92222002-1-100-12-1-1-10ζ989ζ9792ζ9594ζ9792ζ989ζ95940ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ102222002-1-100-12-1-1-10ζ9594ζ989ζ9792ζ989ζ9594ζ97920ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ1122-2-2002-1-10012-1-110ζ9594ζ989ζ9792ζ989ζ9594ζ9792095949899792    orthogonal lifted from D18
ρ1222-2-2002-1-10012-1-110ζ9792ζ9594ζ989ζ9594ζ9792ζ989097929594989    orthogonal lifted from D18
ρ1322-2-2002-1-10012-1-110ζ989ζ9792ζ9594ζ9792ζ989ζ9594098997929594    orthogonal lifted from D18
ρ142222002-1-100-12-1-1-10ζ9792ζ9594ζ989ζ9594ζ9792ζ9890ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ153-13-1-1-1333113-1-1-1-1-10000001000    orthogonal lifted from S4
ρ163-13-111333-1-13-1-1-1-11000000-1000    orthogonal lifted from S4
ρ173-1-31-113331-1-3-1-1-11-10000001000    orthogonal lifted from C2xS4
ρ183-1-311-1333-11-3-1-1-111000000-1000    orthogonal lifted from C2xS4
ρ19440000-24-2000-24-200-2-2-21110000    orthogonal lifted from S32
ρ20440000-2-21000-2-210097+2ζ9295+2ζ9498+2ζ9959497929890000    orthogonal lifted from S3xD9
ρ21440000-2-21000-2-210095+2ζ9498+2ζ997+2ζ92989959497920000    orthogonal lifted from S3xD9
ρ22440000-2-21000-2-210098+2ζ997+2ζ9295+2ζ94979298995940000    orthogonal lifted from S3xD9
ρ236-200-20-36-32001-2101000000-1000    orthogonal lifted from S3xS4
ρ246-26-2006-3-300-3-211100000000000    orthogonal lifted from C3.S4
ρ256-20020-36-3-2001-210-10000001000    orthogonal lifted from S3xS4
ρ266-2-62006-3-3003-211-100000000000    orthogonal lifted from C2xC3.S4
ρ2712-40000-6-6300022-1000000000000    orthogonal faithful

Smallest permutation representation of S3xC3.S4
On 36 points
Generators in S36
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 28)(10 27)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 27)(2 19)(4 21)(5 22)(7 24)(8 25)(10 29)(11 30)(13 32)(14 33)(16 35)(17 36)
(2 19)(3 20)(5 22)(6 23)(8 25)(9 26)(11 30)(12 31)(14 33)(15 34)(17 36)(18 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 29)(2 28)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)

G:=sub<Sym(36)| (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,28)(10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,27)(2,19)(4,21)(5,22)(7,24)(8,25)(10,29)(11,30)(13,32)(14,33)(16,35)(17,36), (2,19)(3,20)(5,22)(6,23)(8,25)(9,26)(11,30)(12,31)(14,33)(15,34)(17,36)(18,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,29)(2,28)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;

G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,28)(10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,27)(2,19)(4,21)(5,22)(7,24)(8,25)(10,29)(11,30)(13,32)(14,33)(16,35)(17,36), (2,19)(3,20)(5,22)(6,23)(8,25)(9,26)(11,30)(12,31)(14,33)(15,34)(17,36)(18,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,29)(2,28)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );

G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,28),(10,27),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,27),(2,19),(4,21),(5,22),(7,24),(8,25),(10,29),(11,30),(13,32),(14,33),(16,35),(17,36)], [(2,19),(3,20),(5,22),(6,23),(8,25),(9,26),(11,30),(12,31),(14,33),(15,34),(17,36),(18,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,29),(2,28),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])

Matrix representation of S3xC3.S4 in GL7(F37)

1000000
0100000
0001000
003636000
0000100
0000010
0000001
,
36000000
03600000
00360000
0011000
0000100
0000010
0000001
,
01900000
353600000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
00003600
00000360
0000111
,
1000000
0100000
0010000
0001000
0000100
00000360
000036036
,
61300000
221700000
0010000
0001000
0000363635
0000100
0000001
,
1000000
353600000
00360000
00036000
0000100
0000363635
0000001

G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,1,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,35,0,0,0,0,0,19,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,1,0,0,0,0,0,36,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,36,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[6,22,0,0,0,0,0,13,17,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,1,0,0,0,0,0,36,0,0,0,0,0,0,35,0,1],[1,35,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,36,0,0,0,0,0,0,35,1] >;

S3xC3.S4 in GAP, Magma, Sage, TeX

S_3\times C_3.S_4
% in TeX

G:=Group("S3xC3.S4");
// GroupNames label

G:=SmallGroup(432,522);
// by ID

G=gap.SmallGroup(432,522);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,471,394,675,1271,4548,2287,2659,3989]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^3=d^2=e^2=g^2=1,f^3=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g=c^-1,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=c^-1*f^2>;
// generators/relations

Export

Character table of S3xC3.S4 in TeX

׿
x
:
Z
F
o
wr
Q
<