extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×C12) = C3×C12.29D6 | φ: S3×C12/C3×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(S3xC12) | 432,415 |
C6.2(S3×C12) = C3×C12.31D6 | φ: S3×C12/C3×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(S3xC12) | 432,417 |
C6.3(S3×C12) = C3×C6.D12 | φ: S3×C12/C3×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.3(S3xC12) | 432,427 |
C6.4(S3×C12) = C3×C62.C22 | φ: S3×C12/C3×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.4(S3xC12) | 432,429 |
C6.5(S3×C12) = D9×C24 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.5(S3xC12) | 432,105 |
C6.6(S3×C12) = C3×C8⋊D9 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.6(S3xC12) | 432,106 |
C6.7(S3×C12) = C8×C32⋊C6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6 | C6.7(S3xC12) | 432,115 |
C6.8(S3×C12) = He3⋊5M4(2) | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6 | C6.8(S3xC12) | 432,116 |
C6.9(S3×C12) = C8×C9⋊C6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6 | C6.9(S3xC12) | 432,120 |
C6.10(S3×C12) = C72⋊C6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6 | C6.10(S3xC12) | 432,121 |
C6.11(S3×C12) = C12×Dic9 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.11(S3xC12) | 432,128 |
C6.12(S3×C12) = C3×Dic9⋊C4 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.12(S3xC12) | 432,129 |
C6.13(S3×C12) = C3×D18⋊C4 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.13(S3xC12) | 432,134 |
C6.14(S3×C12) = C4×C32⋊C12 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.14(S3xC12) | 432,138 |
C6.15(S3×C12) = C62.19D6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.15(S3xC12) | 432,139 |
C6.16(S3×C12) = C62.21D6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.16(S3xC12) | 432,141 |
C6.17(S3×C12) = C4×C9⋊C12 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.17(S3xC12) | 432,144 |
C6.18(S3×C12) = Dic9⋊C12 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.18(S3xC12) | 432,145 |
C6.19(S3×C12) = D18⋊C12 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.19(S3xC12) | 432,147 |
C6.20(S3×C12) = D9×C2×C12 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.20(S3xC12) | 432,342 |
C6.21(S3×C12) = C2×C4×C32⋊C6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.21(S3xC12) | 432,349 |
C6.22(S3×C12) = C2×C4×C9⋊C6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.22(S3xC12) | 432,353 |
C6.23(S3×C12) = C3⋊S3×C24 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.23(S3xC12) | 432,480 |
C6.24(S3×C12) = C3×C24⋊S3 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.24(S3xC12) | 432,481 |
C6.25(S3×C12) = C12×C3⋊Dic3 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.25(S3xC12) | 432,487 |
C6.26(S3×C12) = C3×C6.Dic6 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.26(S3xC12) | 432,488 |
C6.27(S3×C12) = C3×C6.11D12 | φ: S3×C12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.27(S3xC12) | 432,490 |
C6.28(S3×C12) = C3×S3×C3⋊C8 | φ: S3×C12/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.28(S3xC12) | 432,414 |
C6.29(S3×C12) = C3×D6.Dic3 | φ: S3×C12/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.29(S3xC12) | 432,416 |
C6.30(S3×C12) = C3×Dic32 | φ: S3×C12/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.30(S3xC12) | 432,425 |
C6.31(S3×C12) = C3×D6⋊Dic3 | φ: S3×C12/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.31(S3xC12) | 432,426 |
C6.32(S3×C12) = C3×Dic3⋊Dic3 | φ: S3×C12/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.32(S3xC12) | 432,428 |
C6.33(S3×C12) = S3×C72 | central extension (φ=1) | 144 | 2 | C6.33(S3xC12) | 432,109 |
C6.34(S3×C12) = C9×C8⋊S3 | central extension (φ=1) | 144 | 2 | C6.34(S3xC12) | 432,110 |
C6.35(S3×C12) = Dic3×C36 | central extension (φ=1) | 144 | | C6.35(S3xC12) | 432,131 |
C6.36(S3×C12) = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | C6.36(S3xC12) | 432,132 |
C6.37(S3×C12) = C9×D6⋊C4 | central extension (φ=1) | 144 | | C6.37(S3xC12) | 432,135 |
C6.38(S3×C12) = S3×C2×C36 | central extension (φ=1) | 144 | | C6.38(S3xC12) | 432,345 |
C6.39(S3×C12) = S3×C3×C24 | central extension (φ=1) | 144 | | C6.39(S3xC12) | 432,464 |
C6.40(S3×C12) = C32×C8⋊S3 | central extension (φ=1) | 144 | | C6.40(S3xC12) | 432,465 |
C6.41(S3×C12) = Dic3×C3×C12 | central extension (φ=1) | 144 | | C6.41(S3xC12) | 432,471 |
C6.42(S3×C12) = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | C6.42(S3xC12) | 432,472 |
C6.43(S3×C12) = C32×D6⋊C4 | central extension (φ=1) | 144 | | C6.43(S3xC12) | 432,474 |