Copied to
clipboard

?

G = C2×C282D4order 448 = 26·7

Direct product of C2 and C282D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C282D4, C24.39D14, C287(C2×D4), D144(C2×D4), (C2×C28)⋊12D4, (C2×D4)⋊36D14, (C22×D4)⋊6D7, C144(C4⋊D4), (C22×D7)⋊12D4, (D4×C14)⋊43C22, C4⋊Dic777C22, C22.147(D4×D7), (C2×C14).295C24, (C2×C28).542C23, (C22×C4).379D14, C14.142(C22×D4), C23.D761C22, (C23×C14).76C22, C22.308(C23×D7), C23.337(C22×D7), C22.79(D42D7), (C22×C28).275C22, (C22×C14).419C23, (C2×Dic7).152C23, (C22×D7).239C23, (C23×D7).113C22, (C22×Dic7).163C22, (D4×C2×C14)⋊4C2, C75(C2×C4⋊D4), C43(C2×C7⋊D4), C2.102(C2×D4×D7), (D7×C22×C4)⋊6C2, (C2×C4×D7)⋊57C22, (C2×C4)⋊13(C7⋊D4), (C2×C4⋊Dic7)⋊45C2, C14.105(C2×C4○D4), C2.69(C2×D42D7), (C2×C14).580(C2×D4), (C2×C7⋊D4)⋊44C22, (C22×C7⋊D4)⋊13C2, (C2×C23.D7)⋊28C2, C2.15(C22×C7⋊D4), (C2×C4).625(C22×D7), C22.110(C2×C7⋊D4), (C2×C14).177(C4○D4), SmallGroup(448,1253)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C2×C282D4
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C2×C282D4
C7C2×C14 — C2×C282D4

Subgroups: 1876 in 426 conjugacy classes, 135 normal (21 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×4], C4 [×6], C22, C22 [×6], C22 [×36], C7, C2×C4 [×6], C2×C4 [×20], D4 [×24], C23, C23 [×4], C23 [×22], D7 [×4], C14 [×3], C14 [×4], C14 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4, C22×C4 [×11], C2×D4 [×4], C2×D4 [×20], C24 [×2], C24, Dic7 [×6], C28 [×4], D14 [×4], D14 [×12], C2×C14, C2×C14 [×6], C2×C14 [×20], C2×C22⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×8], C23×C4, C22×D4, C22×D4 [×2], C4×D7 [×8], C2×Dic7 [×6], C2×Dic7 [×6], C7⋊D4 [×16], C2×C28 [×6], C7×D4 [×8], C22×D7 [×6], C22×D7 [×4], C22×C14, C22×C14 [×4], C22×C14 [×12], C2×C4⋊D4, C4⋊Dic7 [×4], C23.D7 [×8], C2×C4×D7 [×4], C2×C4×D7 [×4], C22×Dic7, C22×Dic7 [×2], C2×C7⋊D4 [×8], C2×C7⋊D4 [×8], C22×C28, D4×C14 [×4], D4×C14 [×4], C23×D7, C23×C14 [×2], C2×C4⋊Dic7, C282D4 [×8], C2×C23.D7 [×2], D7×C22×C4, C22×C7⋊D4 [×2], D4×C2×C14, C2×C282D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], D7, C2×D4 [×12], C4○D4 [×2], C24, D14 [×7], C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, C7⋊D4 [×4], C22×D7 [×7], C2×C4⋊D4, D4×D7 [×2], D42D7 [×2], C2×C7⋊D4 [×6], C23×D7, C282D4 [×4], C2×D4×D7, C2×D42D7, C22×C7⋊D4, C2×C282D4

Generators and relations
 G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b13, dcd=c-1 >

Smallest permutation representation
On 224 points
Generators in S224
(1 188)(2 189)(3 190)(4 191)(5 192)(6 193)(7 194)(8 195)(9 196)(10 169)(11 170)(12 171)(13 172)(14 173)(15 174)(16 175)(17 176)(18 177)(19 178)(20 179)(21 180)(22 181)(23 182)(24 183)(25 184)(26 185)(27 186)(28 187)(29 147)(30 148)(31 149)(32 150)(33 151)(34 152)(35 153)(36 154)(37 155)(38 156)(39 157)(40 158)(41 159)(42 160)(43 161)(44 162)(45 163)(46 164)(47 165)(48 166)(49 167)(50 168)(51 141)(52 142)(53 143)(54 144)(55 145)(56 146)(57 224)(58 197)(59 198)(60 199)(61 200)(62 201)(63 202)(64 203)(65 204)(66 205)(67 206)(68 207)(69 208)(70 209)(71 210)(72 211)(73 212)(74 213)(75 214)(76 215)(77 216)(78 217)(79 218)(80 219)(81 220)(82 221)(83 222)(84 223)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)(101 132)(102 133)(103 134)(104 135)(105 136)(106 137)(107 138)(108 139)(109 140)(110 113)(111 114)(112 115)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 60 150 107)(2 59 151 106)(3 58 152 105)(4 57 153 104)(5 84 154 103)(6 83 155 102)(7 82 156 101)(8 81 157 100)(9 80 158 99)(10 79 159 98)(11 78 160 97)(12 77 161 96)(13 76 162 95)(14 75 163 94)(15 74 164 93)(16 73 165 92)(17 72 166 91)(18 71 167 90)(19 70 168 89)(20 69 141 88)(21 68 142 87)(22 67 143 86)(23 66 144 85)(24 65 145 112)(25 64 146 111)(26 63 147 110)(27 62 148 109)(28 61 149 108)(29 113 185 202)(30 140 186 201)(31 139 187 200)(32 138 188 199)(33 137 189 198)(34 136 190 197)(35 135 191 224)(36 134 192 223)(37 133 193 222)(38 132 194 221)(39 131 195 220)(40 130 196 219)(41 129 169 218)(42 128 170 217)(43 127 171 216)(44 126 172 215)(45 125 173 214)(46 124 174 213)(47 123 175 212)(48 122 176 211)(49 121 177 210)(50 120 178 209)(51 119 179 208)(52 118 180 207)(53 117 181 206)(54 116 182 205)(55 115 183 204)(56 114 184 203)
(1 188)(2 173)(3 186)(4 171)(5 184)(6 169)(7 182)(8 195)(9 180)(10 193)(11 178)(12 191)(13 176)(14 189)(15 174)(16 187)(17 172)(18 185)(19 170)(20 183)(21 196)(22 181)(23 194)(24 179)(25 192)(26 177)(27 190)(28 175)(29 167)(30 152)(31 165)(32 150)(33 163)(34 148)(35 161)(36 146)(37 159)(38 144)(39 157)(40 142)(41 155)(42 168)(43 153)(44 166)(45 151)(46 164)(47 149)(48 162)(49 147)(50 160)(51 145)(52 158)(53 143)(54 156)(55 141)(56 154)(57 127)(58 140)(59 125)(60 138)(61 123)(62 136)(63 121)(64 134)(65 119)(66 132)(67 117)(68 130)(69 115)(70 128)(71 113)(72 126)(73 139)(74 124)(75 137)(76 122)(77 135)(78 120)(79 133)(80 118)(81 131)(82 116)(83 129)(84 114)(85 221)(86 206)(87 219)(88 204)(89 217)(90 202)(91 215)(92 200)(93 213)(94 198)(95 211)(96 224)(97 209)(98 222)(99 207)(100 220)(101 205)(102 218)(103 203)(104 216)(105 201)(106 214)(107 199)(108 212)(109 197)(110 210)(111 223)(112 208)

G:=sub<Sym(224)| (1,188)(2,189)(3,190)(4,191)(5,192)(6,193)(7,194)(8,195)(9,196)(10,169)(11,170)(12,171)(13,172)(14,173)(15,174)(16,175)(17,176)(18,177)(19,178)(20,179)(21,180)(22,181)(23,182)(24,183)(25,184)(26,185)(27,186)(28,187)(29,147)(30,148)(31,149)(32,150)(33,151)(34,152)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(41,159)(42,160)(43,161)(44,162)(45,163)(46,164)(47,165)(48,166)(49,167)(50,168)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,224)(58,197)(59,198)(60,199)(61,200)(62,201)(63,202)(64,203)(65,204)(66,205)(67,206)(68,207)(69,208)(70,209)(71,210)(72,211)(73,212)(74,213)(75,214)(76,215)(77,216)(78,217)(79,218)(80,219)(81,220)(82,221)(83,222)(84,223)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,113)(111,114)(112,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,60,150,107)(2,59,151,106)(3,58,152,105)(4,57,153,104)(5,84,154,103)(6,83,155,102)(7,82,156,101)(8,81,157,100)(9,80,158,99)(10,79,159,98)(11,78,160,97)(12,77,161,96)(13,76,162,95)(14,75,163,94)(15,74,164,93)(16,73,165,92)(17,72,166,91)(18,71,167,90)(19,70,168,89)(20,69,141,88)(21,68,142,87)(22,67,143,86)(23,66,144,85)(24,65,145,112)(25,64,146,111)(26,63,147,110)(27,62,148,109)(28,61,149,108)(29,113,185,202)(30,140,186,201)(31,139,187,200)(32,138,188,199)(33,137,189,198)(34,136,190,197)(35,135,191,224)(36,134,192,223)(37,133,193,222)(38,132,194,221)(39,131,195,220)(40,130,196,219)(41,129,169,218)(42,128,170,217)(43,127,171,216)(44,126,172,215)(45,125,173,214)(46,124,174,213)(47,123,175,212)(48,122,176,211)(49,121,177,210)(50,120,178,209)(51,119,179,208)(52,118,180,207)(53,117,181,206)(54,116,182,205)(55,115,183,204)(56,114,184,203), (1,188)(2,173)(3,186)(4,171)(5,184)(6,169)(7,182)(8,195)(9,180)(10,193)(11,178)(12,191)(13,176)(14,189)(15,174)(16,187)(17,172)(18,185)(19,170)(20,183)(21,196)(22,181)(23,194)(24,179)(25,192)(26,177)(27,190)(28,175)(29,167)(30,152)(31,165)(32,150)(33,163)(34,148)(35,161)(36,146)(37,159)(38,144)(39,157)(40,142)(41,155)(42,168)(43,153)(44,166)(45,151)(46,164)(47,149)(48,162)(49,147)(50,160)(51,145)(52,158)(53,143)(54,156)(55,141)(56,154)(57,127)(58,140)(59,125)(60,138)(61,123)(62,136)(63,121)(64,134)(65,119)(66,132)(67,117)(68,130)(69,115)(70,128)(71,113)(72,126)(73,139)(74,124)(75,137)(76,122)(77,135)(78,120)(79,133)(80,118)(81,131)(82,116)(83,129)(84,114)(85,221)(86,206)(87,219)(88,204)(89,217)(90,202)(91,215)(92,200)(93,213)(94,198)(95,211)(96,224)(97,209)(98,222)(99,207)(100,220)(101,205)(102,218)(103,203)(104,216)(105,201)(106,214)(107,199)(108,212)(109,197)(110,210)(111,223)(112,208)>;

G:=Group( (1,188)(2,189)(3,190)(4,191)(5,192)(6,193)(7,194)(8,195)(9,196)(10,169)(11,170)(12,171)(13,172)(14,173)(15,174)(16,175)(17,176)(18,177)(19,178)(20,179)(21,180)(22,181)(23,182)(24,183)(25,184)(26,185)(27,186)(28,187)(29,147)(30,148)(31,149)(32,150)(33,151)(34,152)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(41,159)(42,160)(43,161)(44,162)(45,163)(46,164)(47,165)(48,166)(49,167)(50,168)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,224)(58,197)(59,198)(60,199)(61,200)(62,201)(63,202)(64,203)(65,204)(66,205)(67,206)(68,207)(69,208)(70,209)(71,210)(72,211)(73,212)(74,213)(75,214)(76,215)(77,216)(78,217)(79,218)(80,219)(81,220)(82,221)(83,222)(84,223)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,113)(111,114)(112,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,60,150,107)(2,59,151,106)(3,58,152,105)(4,57,153,104)(5,84,154,103)(6,83,155,102)(7,82,156,101)(8,81,157,100)(9,80,158,99)(10,79,159,98)(11,78,160,97)(12,77,161,96)(13,76,162,95)(14,75,163,94)(15,74,164,93)(16,73,165,92)(17,72,166,91)(18,71,167,90)(19,70,168,89)(20,69,141,88)(21,68,142,87)(22,67,143,86)(23,66,144,85)(24,65,145,112)(25,64,146,111)(26,63,147,110)(27,62,148,109)(28,61,149,108)(29,113,185,202)(30,140,186,201)(31,139,187,200)(32,138,188,199)(33,137,189,198)(34,136,190,197)(35,135,191,224)(36,134,192,223)(37,133,193,222)(38,132,194,221)(39,131,195,220)(40,130,196,219)(41,129,169,218)(42,128,170,217)(43,127,171,216)(44,126,172,215)(45,125,173,214)(46,124,174,213)(47,123,175,212)(48,122,176,211)(49,121,177,210)(50,120,178,209)(51,119,179,208)(52,118,180,207)(53,117,181,206)(54,116,182,205)(55,115,183,204)(56,114,184,203), (1,188)(2,173)(3,186)(4,171)(5,184)(6,169)(7,182)(8,195)(9,180)(10,193)(11,178)(12,191)(13,176)(14,189)(15,174)(16,187)(17,172)(18,185)(19,170)(20,183)(21,196)(22,181)(23,194)(24,179)(25,192)(26,177)(27,190)(28,175)(29,167)(30,152)(31,165)(32,150)(33,163)(34,148)(35,161)(36,146)(37,159)(38,144)(39,157)(40,142)(41,155)(42,168)(43,153)(44,166)(45,151)(46,164)(47,149)(48,162)(49,147)(50,160)(51,145)(52,158)(53,143)(54,156)(55,141)(56,154)(57,127)(58,140)(59,125)(60,138)(61,123)(62,136)(63,121)(64,134)(65,119)(66,132)(67,117)(68,130)(69,115)(70,128)(71,113)(72,126)(73,139)(74,124)(75,137)(76,122)(77,135)(78,120)(79,133)(80,118)(81,131)(82,116)(83,129)(84,114)(85,221)(86,206)(87,219)(88,204)(89,217)(90,202)(91,215)(92,200)(93,213)(94,198)(95,211)(96,224)(97,209)(98,222)(99,207)(100,220)(101,205)(102,218)(103,203)(104,216)(105,201)(106,214)(107,199)(108,212)(109,197)(110,210)(111,223)(112,208) );

G=PermutationGroup([(1,188),(2,189),(3,190),(4,191),(5,192),(6,193),(7,194),(8,195),(9,196),(10,169),(11,170),(12,171),(13,172),(14,173),(15,174),(16,175),(17,176),(18,177),(19,178),(20,179),(21,180),(22,181),(23,182),(24,183),(25,184),(26,185),(27,186),(28,187),(29,147),(30,148),(31,149),(32,150),(33,151),(34,152),(35,153),(36,154),(37,155),(38,156),(39,157),(40,158),(41,159),(42,160),(43,161),(44,162),(45,163),(46,164),(47,165),(48,166),(49,167),(50,168),(51,141),(52,142),(53,143),(54,144),(55,145),(56,146),(57,224),(58,197),(59,198),(60,199),(61,200),(62,201),(63,202),(64,203),(65,204),(66,205),(67,206),(68,207),(69,208),(70,209),(71,210),(72,211),(73,212),(74,213),(75,214),(76,215),(77,216),(78,217),(79,218),(80,219),(81,220),(82,221),(83,222),(84,223),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131),(101,132),(102,133),(103,134),(104,135),(105,136),(106,137),(107,138),(108,139),(109,140),(110,113),(111,114),(112,115)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,60,150,107),(2,59,151,106),(3,58,152,105),(4,57,153,104),(5,84,154,103),(6,83,155,102),(7,82,156,101),(8,81,157,100),(9,80,158,99),(10,79,159,98),(11,78,160,97),(12,77,161,96),(13,76,162,95),(14,75,163,94),(15,74,164,93),(16,73,165,92),(17,72,166,91),(18,71,167,90),(19,70,168,89),(20,69,141,88),(21,68,142,87),(22,67,143,86),(23,66,144,85),(24,65,145,112),(25,64,146,111),(26,63,147,110),(27,62,148,109),(28,61,149,108),(29,113,185,202),(30,140,186,201),(31,139,187,200),(32,138,188,199),(33,137,189,198),(34,136,190,197),(35,135,191,224),(36,134,192,223),(37,133,193,222),(38,132,194,221),(39,131,195,220),(40,130,196,219),(41,129,169,218),(42,128,170,217),(43,127,171,216),(44,126,172,215),(45,125,173,214),(46,124,174,213),(47,123,175,212),(48,122,176,211),(49,121,177,210),(50,120,178,209),(51,119,179,208),(52,118,180,207),(53,117,181,206),(54,116,182,205),(55,115,183,204),(56,114,184,203)], [(1,188),(2,173),(3,186),(4,171),(5,184),(6,169),(7,182),(8,195),(9,180),(10,193),(11,178),(12,191),(13,176),(14,189),(15,174),(16,187),(17,172),(18,185),(19,170),(20,183),(21,196),(22,181),(23,194),(24,179),(25,192),(26,177),(27,190),(28,175),(29,167),(30,152),(31,165),(32,150),(33,163),(34,148),(35,161),(36,146),(37,159),(38,144),(39,157),(40,142),(41,155),(42,168),(43,153),(44,166),(45,151),(46,164),(47,149),(48,162),(49,147),(50,160),(51,145),(52,158),(53,143),(54,156),(55,141),(56,154),(57,127),(58,140),(59,125),(60,138),(61,123),(62,136),(63,121),(64,134),(65,119),(66,132),(67,117),(68,130),(69,115),(70,128),(71,113),(72,126),(73,139),(74,124),(75,137),(76,122),(77,135),(78,120),(79,133),(80,118),(81,131),(82,116),(83,129),(84,114),(85,221),(86,206),(87,219),(88,204),(89,217),(90,202),(91,215),(92,200),(93,213),(94,198),(95,211),(96,224),(97,209),(98,222),(99,207),(100,220),(101,205),(102,218),(103,203),(104,216),(105,201),(106,214),(107,199),(108,212),(109,197),(110,210),(111,223),(112,208)])

Matrix representation G ⊆ GL6(𝔽29)

2800000
0280000
0028000
0002800
0000280
0000028
,
21220000
5260000
0025300
00232600
0000217
00002727
,
0190000
2600000
0021200
0011800
000012
0000028
,
0100000
300000
0025300
0024400
0000280
0000028

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[21,5,0,0,0,0,22,26,0,0,0,0,0,0,25,23,0,0,0,0,3,26,0,0,0,0,0,0,2,27,0,0,0,0,17,27],[0,26,0,0,0,0,19,0,0,0,0,0,0,0,21,11,0,0,0,0,2,8,0,0,0,0,0,0,1,0,0,0,0,0,2,28],[0,3,0,0,0,0,10,0,0,0,0,0,0,0,25,24,0,0,0,0,3,4,0,0,0,0,0,0,28,0,0,0,0,0,0,28] >;

88 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14U14V···14AS28A···28L
order12···22222222244444444444477714···1414···1428···28
size11···1444414141414222214141414282828282222···24···44···4

88 irreducible representations

dim11111112222222244
type++++++++++++++-
imageC1C2C2C2C2C2C2D4D4D7C4○D4D14D14D14C7⋊D4D4×D7D42D7
kernelC2×C282D4C2×C4⋊Dic7C282D4C2×C23.D7D7×C22×C4C22×C7⋊D4D4×C2×C14C2×C28C22×D7C22×D4C2×C14C22×C4C2×D4C24C2×C4C22C22
# reps1182121443431262466

In GAP, Magma, Sage, TeX

C_2\times C_{28}\rtimes_2D_4
% in TeX

G:=Group("C2xC28:2D4");
// GroupNames label

G:=SmallGroup(448,1253);
// by ID

G=gap.SmallGroup(448,1253);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,675,297,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^13,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽