Copied to
clipboard

?

G = F5×C2×C12order 480 = 25·3·5

Direct product of C2×C12 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: F5×C2×C12, C303C42, C10⋊(C4×C12), D5⋊(C4×C12), C203(C2×C12), (C2×C20)⋊5C12, C6010(C2×C4), (C2×C60)⋊10C4, (C4×D5)⋊5C12, C154(C2×C42), (D5×C12)⋊13C4, (C3×D5)⋊4C42, D5.(C22×C12), (C2×Dic5)⋊7C12, (C6×Dic5)⋊17C4, Dic56(C2×C12), D10.8(C2×C12), (C22×F5).3C6, C22.17(C6×F5), C6.48(C22×F5), C10.4(C22×C12), C30.86(C22×C4), D10.8(C22×C6), (C6×D5).67C23, (C6×F5).16C22, (D5×C12).138C22, C5⋊(C2×C4×C12), C2.2(C2×C6×F5), (C2×C6×F5).6C2, (C2×C4×D5).18C6, (D5×C2×C12).39C2, (C2×F5).5(C2×C6), (C2×C6).60(C2×F5), (C2×C30).59(C2×C4), (C6×D5).46(C2×C4), (C4×D5).35(C2×C6), (C2×C10).16(C2×C12), (C3×Dic5)⋊27(C2×C4), (C3×D5).4(C22×C4), (D5×C2×C6).149C22, (C22×D5).38(C2×C6), SmallGroup(480,1050)

Series: Derived Chief Lower central Upper central

C1C5 — F5×C2×C12
C1C5C10D10C6×D5C6×F5C2×C6×F5 — F5×C2×C12
C5 — F5×C2×C12

Subgroups: 584 in 216 conjugacy classes, 124 normal (28 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C4 [×10], C22, C22 [×6], C5, C6, C6 [×2], C6 [×4], C2×C4, C2×C4 [×17], C23, D5 [×4], C10, C10 [×2], C12 [×2], C12 [×10], C2×C6, C2×C6 [×6], C15, C42 [×4], C22×C4 [×3], Dic5 [×2], C20 [×2], F5 [×8], D10 [×2], D10 [×4], C2×C10, C2×C12, C2×C12 [×17], C22×C6, C3×D5 [×4], C30, C30 [×2], C2×C42, C4×D5 [×4], C2×Dic5, C2×C20, C2×F5 [×12], C22×D5, C4×C12 [×4], C22×C12 [×3], C3×Dic5 [×2], C60 [×2], C3×F5 [×8], C6×D5 [×2], C6×D5 [×4], C2×C30, C4×F5 [×4], C2×C4×D5, C22×F5 [×2], C2×C4×C12, D5×C12 [×4], C6×Dic5, C2×C60, C6×F5 [×12], D5×C2×C6, C2×C4×F5, C12×F5 [×4], D5×C2×C12, C2×C6×F5 [×2], F5×C2×C12

Quotients:
C1, C2 [×7], C3, C4 [×12], C22 [×7], C6 [×7], C2×C4 [×18], C23, C12 [×12], C2×C6 [×7], C42 [×4], C22×C4 [×3], F5, C2×C12 [×18], C22×C6, C2×C42, C2×F5 [×3], C4×C12 [×4], C22×C12 [×3], C3×F5, C4×F5 [×2], C22×F5, C2×C4×C12, C6×F5 [×3], C2×C4×F5, C12×F5 [×2], C2×C6×F5, F5×C2×C12

Generators and relations
 G = < a,b,c,d | a2=b12=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Smallest permutation representation
On 120 points
Generators in S120
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 85)(10 86)(11 87)(12 88)(13 84)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 80)(22 81)(23 82)(24 83)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 37)(35 38)(36 39)(49 69)(50 70)(51 71)(52 72)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)(97 118)(98 119)(99 120)(100 109)(101 110)(102 111)(103 112)(104 113)(105 114)(106 115)(107 116)(108 117)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 107 36 78 57)(2 108 25 79 58)(3 97 26 80 59)(4 98 27 81 60)(5 99 28 82 49)(6 100 29 83 50)(7 101 30 84 51)(8 102 31 73 52)(9 103 32 74 53)(10 104 33 75 54)(11 105 34 76 55)(12 106 35 77 56)(13 71 95 110 45)(14 72 96 111 46)(15 61 85 112 47)(16 62 86 113 48)(17 63 87 114 37)(18 64 88 115 38)(19 65 89 116 39)(20 66 90 117 40)(21 67 91 118 41)(22 68 92 119 42)(23 69 93 120 43)(24 70 94 109 44)
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 85)(10 86)(11 87)(12 88)(13 101 45 51)(14 102 46 52)(15 103 47 53)(16 104 48 54)(17 105 37 55)(18 106 38 56)(19 107 39 57)(20 108 40 58)(21 97 41 59)(22 98 42 60)(23 99 43 49)(24 100 44 50)(25 66 79 117)(26 67 80 118)(27 68 81 119)(28 69 82 120)(29 70 83 109)(30 71 84 110)(31 72 73 111)(32 61 74 112)(33 62 75 113)(34 63 76 114)(35 64 77 115)(36 65 78 116)

G:=sub<Sym(120)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,85)(10,86)(11,87)(12,88)(13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39)(49,69)(50,70)(51,71)(52,72)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(97,118)(98,119)(99,120)(100,109)(101,110)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,107,36,78,57)(2,108,25,79,58)(3,97,26,80,59)(4,98,27,81,60)(5,99,28,82,49)(6,100,29,83,50)(7,101,30,84,51)(8,102,31,73,52)(9,103,32,74,53)(10,104,33,75,54)(11,105,34,76,55)(12,106,35,77,56)(13,71,95,110,45)(14,72,96,111,46)(15,61,85,112,47)(16,62,86,113,48)(17,63,87,114,37)(18,64,88,115,38)(19,65,89,116,39)(20,66,90,117,40)(21,67,91,118,41)(22,68,92,119,42)(23,69,93,120,43)(24,70,94,109,44), (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,85)(10,86)(11,87)(12,88)(13,101,45,51)(14,102,46,52)(15,103,47,53)(16,104,48,54)(17,105,37,55)(18,106,38,56)(19,107,39,57)(20,108,40,58)(21,97,41,59)(22,98,42,60)(23,99,43,49)(24,100,44,50)(25,66,79,117)(26,67,80,118)(27,68,81,119)(28,69,82,120)(29,70,83,109)(30,71,84,110)(31,72,73,111)(32,61,74,112)(33,62,75,113)(34,63,76,114)(35,64,77,115)(36,65,78,116)>;

G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,85)(10,86)(11,87)(12,88)(13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39)(49,69)(50,70)(51,71)(52,72)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(97,118)(98,119)(99,120)(100,109)(101,110)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,107,36,78,57)(2,108,25,79,58)(3,97,26,80,59)(4,98,27,81,60)(5,99,28,82,49)(6,100,29,83,50)(7,101,30,84,51)(8,102,31,73,52)(9,103,32,74,53)(10,104,33,75,54)(11,105,34,76,55)(12,106,35,77,56)(13,71,95,110,45)(14,72,96,111,46)(15,61,85,112,47)(16,62,86,113,48)(17,63,87,114,37)(18,64,88,115,38)(19,65,89,116,39)(20,66,90,117,40)(21,67,91,118,41)(22,68,92,119,42)(23,69,93,120,43)(24,70,94,109,44), (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,85)(10,86)(11,87)(12,88)(13,101,45,51)(14,102,46,52)(15,103,47,53)(16,104,48,54)(17,105,37,55)(18,106,38,56)(19,107,39,57)(20,108,40,58)(21,97,41,59)(22,98,42,60)(23,99,43,49)(24,100,44,50)(25,66,79,117)(26,67,80,118)(27,68,81,119)(28,69,82,120)(29,70,83,109)(30,71,84,110)(31,72,73,111)(32,61,74,112)(33,62,75,113)(34,63,76,114)(35,64,77,115)(36,65,78,116) );

G=PermutationGroup([(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,85),(10,86),(11,87),(12,88),(13,84),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,80),(22,81),(23,82),(24,83),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,37),(35,38),(36,39),(49,69),(50,70),(51,71),(52,72),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68),(97,118),(98,119),(99,120),(100,109),(101,110),(102,111),(103,112),(104,113),(105,114),(106,115),(107,116),(108,117)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,107,36,78,57),(2,108,25,79,58),(3,97,26,80,59),(4,98,27,81,60),(5,99,28,82,49),(6,100,29,83,50),(7,101,30,84,51),(8,102,31,73,52),(9,103,32,74,53),(10,104,33,75,54),(11,105,34,76,55),(12,106,35,77,56),(13,71,95,110,45),(14,72,96,111,46),(15,61,85,112,47),(16,62,86,113,48),(17,63,87,114,37),(18,64,88,115,38),(19,65,89,116,39),(20,66,90,117,40),(21,67,91,118,41),(22,68,92,119,42),(23,69,93,120,43),(24,70,94,109,44)], [(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,85),(10,86),(11,87),(12,88),(13,101,45,51),(14,102,46,52),(15,103,47,53),(16,104,48,54),(17,105,37,55),(18,106,38,56),(19,107,39,57),(20,108,40,58),(21,97,41,59),(22,98,42,60),(23,99,43,49),(24,100,44,50),(25,66,79,117),(26,67,80,118),(27,68,81,119),(28,69,82,120),(29,70,83,109),(30,71,84,110),(31,72,73,111),(32,61,74,112),(33,62,75,113),(34,63,76,114),(35,64,77,115),(36,65,78,116)])

Matrix representation G ⊆ GL5(𝔽61)

600000
01000
00100
00010
00001
,
110000
021000
002100
000210
000021
,
10000
060606060
01000
00100
00010
,
500000
00010
01000
00001
00100

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[11,0,0,0,0,0,21,0,0,0,0,0,21,0,0,0,0,0,21,0,0,0,0,0,21],[1,0,0,0,0,0,60,1,0,0,0,60,0,1,0,0,60,0,0,1,0,60,0,0,0],[50,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0] >;

120 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E···4X 5 6A···6F6G···6N10A10B10C12A···12H12I···12AV15A15B20A20B20C20D30A···30F60A···60H
order122222223344444···456···66···610101012···1212···1215152020202030···3060···60
size111155551111115···541···15···54441···15···54444444···44···4

120 irreducible representations

dim111111111111111144444444
type+++++++
imageC1C2C2C2C3C4C4C4C4C6C6C6C12C12C12C12F5C2×F5C2×F5C3×F5C4×F5C6×F5C6×F5C12×F5
kernelF5×C2×C12C12×F5D5×C2×C12C2×C6×F5C2×C4×F5D5×C12C6×Dic5C2×C60C6×F5C4×F5C2×C4×D5C22×F5C4×D5C2×Dic5C2×C20C2×F5C2×C12C12C2×C6C2×C4C6C4C22C2
# reps14122422168248443212124428

In GAP, Magma, Sage, TeX

F_5\times C_2\times C_{12}
% in TeX

G:=Group("F5xC2xC12");
// GroupNames label

G:=SmallGroup(480,1050);
// by ID

G=gap.SmallGroup(480,1050);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,168,268,9414,818]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽