direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C6×C4⋊F5, C4⋊2(C6×F5), (C2×C60)⋊8C4, C60⋊9(C2×C4), (C2×C12)⋊8F5, C12⋊9(C2×F5), C30⋊3(C4⋊C4), (C2×C20)⋊3C12, C20⋊2(C2×C12), (C4×D5)⋊4C12, D5.1(C6×D4), D5.1(C6×Q8), (D5×C12)⋊11C4, (C6×D5).56D4, (C6×D5).14Q8, D10.4(C3×Q8), (C6×Dic5)⋊18C4, Dic5⋊7(C2×C12), (C2×Dic5)⋊8C12, D10.10(C3×D4), (C22×F5).2C6, C6.49(C22×F5), C22.18(C6×F5), D10.15(C2×C12), C30.87(C22×C4), C10.5(C22×C12), (C6×D5).68C23, D10.9(C22×C6), (C6×F5).14C22, (D5×C12).133C22, C5⋊(C6×C4⋊C4), C10⋊(C3×C4⋊C4), D5⋊(C3×C4⋊C4), C15⋊4(C2×C4⋊C4), C2.6(C2×C6×F5), (C2×C4)⋊3(C3×F5), (C2×C6×F5).5C2, (C2×C4×D5).14C6, (C3×D5)⋊5(C4⋊C4), (D5×C2×C12).35C2, (C2×F5).1(C2×C6), (C2×C6).61(C2×F5), (C3×D5).6(C2×Q8), (C2×C30).60(C2×C4), (C3×D5).10(C2×D4), (C6×D5).64(C2×C4), (C4×D5).31(C2×C6), (C2×C10).17(C2×C12), (C3×Dic5)⋊28(C2×C4), (D5×C2×C6).150C22, (C22×D5).39(C2×C6), SmallGroup(480,1051)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 584 in 184 conjugacy classes, 92 normal (32 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C4 [×6], C22, C22 [×6], C5, C6, C6 [×2], C6 [×4], C2×C4, C2×C4 [×13], C23, D5 [×2], D5 [×2], C10, C10 [×2], C12 [×2], C12 [×6], C2×C6, C2×C6 [×6], C15, C4⋊C4 [×4], C22×C4 [×3], Dic5 [×2], C20 [×2], F5 [×4], D10 [×2], D10 [×4], C2×C10, C2×C12, C2×C12 [×13], C22×C6, C3×D5 [×2], C3×D5 [×2], C30, C30 [×2], C2×C4⋊C4, C4×D5 [×4], C2×Dic5, C2×C20, C2×F5 [×4], C2×F5 [×4], C22×D5, C3×C4⋊C4 [×4], C22×C12 [×3], C3×Dic5 [×2], C60 [×2], C3×F5 [×4], C6×D5 [×2], C6×D5 [×4], C2×C30, C4⋊F5 [×4], C2×C4×D5, C22×F5 [×2], C6×C4⋊C4, D5×C12 [×4], C6×Dic5, C2×C60, C6×F5 [×4], C6×F5 [×4], D5×C2×C6, C2×C4⋊F5, C3×C4⋊F5 [×4], D5×C2×C12, C2×C6×F5 [×2], C6×C4⋊F5
Quotients:
C1, C2 [×7], C3, C4 [×4], C22 [×7], C6 [×7], C2×C4 [×6], D4 [×2], Q8 [×2], C23, C12 [×4], C2×C6 [×7], C4⋊C4 [×4], C22×C4, C2×D4, C2×Q8, F5, C2×C12 [×6], C3×D4 [×2], C3×Q8 [×2], C22×C6, C2×C4⋊C4, C2×F5 [×3], C3×C4⋊C4 [×4], C22×C12, C6×D4, C6×Q8, C3×F5, C4⋊F5 [×2], C22×F5, C6×C4⋊C4, C6×F5 [×3], C2×C4⋊F5, C3×C4⋊F5 [×2], C2×C6×F5, C6×C4⋊F5
Generators and relations
G = < a,b,c,d | a6=b4=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 81 97 108)(2 82 98 103)(3 83 99 104)(4 84 100 105)(5 79 101 106)(6 80 102 107)(7 109 35 17)(8 110 36 18)(9 111 31 13)(10 112 32 14)(11 113 33 15)(12 114 34 16)(19 55 52 89)(20 56 53 90)(21 57 54 85)(22 58 49 86)(23 59 50 87)(24 60 51 88)(25 69 115 96)(26 70 116 91)(27 71 117 92)(28 72 118 93)(29 67 119 94)(30 68 120 95)(37 75 43 61)(38 76 44 62)(39 77 45 63)(40 78 46 64)(41 73 47 65)(42 74 48 66)
(1 25 41 87 109)(2 26 42 88 110)(3 27 37 89 111)(4 28 38 90 112)(5 29 39 85 113)(6 30 40 86 114)(7 108 96 65 50)(8 103 91 66 51)(9 104 92 61 52)(10 105 93 62 53)(11 106 94 63 54)(12 107 95 64 49)(13 99 117 43 55)(14 100 118 44 56)(15 101 119 45 57)(16 102 120 46 58)(17 97 115 47 59)(18 98 116 48 60)(19 31 83 71 75)(20 32 84 72 76)(21 33 79 67 77)(22 34 80 68 78)(23 35 81 69 73)(24 36 82 70 74)
(1 84)(2 79)(3 80)(4 81)(5 82)(6 83)(7 56 96 44)(8 57 91 45)(9 58 92 46)(10 59 93 47)(11 60 94 48)(12 55 95 43)(13 49 117 64)(14 50 118 65)(15 51 119 66)(16 52 120 61)(17 53 115 62)(18 54 116 63)(19 30 75 114)(20 25 76 109)(21 26 77 110)(22 27 78 111)(23 28 73 112)(24 29 74 113)(31 86 71 40)(32 87 72 41)(33 88 67 42)(34 89 68 37)(35 90 69 38)(36 85 70 39)(97 105)(98 106)(99 107)(100 108)(101 103)(102 104)
G:=sub<Sym(120)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,81,97,108)(2,82,98,103)(3,83,99,104)(4,84,100,105)(5,79,101,106)(6,80,102,107)(7,109,35,17)(8,110,36,18)(9,111,31,13)(10,112,32,14)(11,113,33,15)(12,114,34,16)(19,55,52,89)(20,56,53,90)(21,57,54,85)(22,58,49,86)(23,59,50,87)(24,60,51,88)(25,69,115,96)(26,70,116,91)(27,71,117,92)(28,72,118,93)(29,67,119,94)(30,68,120,95)(37,75,43,61)(38,76,44,62)(39,77,45,63)(40,78,46,64)(41,73,47,65)(42,74,48,66), (1,25,41,87,109)(2,26,42,88,110)(3,27,37,89,111)(4,28,38,90,112)(5,29,39,85,113)(6,30,40,86,114)(7,108,96,65,50)(8,103,91,66,51)(9,104,92,61,52)(10,105,93,62,53)(11,106,94,63,54)(12,107,95,64,49)(13,99,117,43,55)(14,100,118,44,56)(15,101,119,45,57)(16,102,120,46,58)(17,97,115,47,59)(18,98,116,48,60)(19,31,83,71,75)(20,32,84,72,76)(21,33,79,67,77)(22,34,80,68,78)(23,35,81,69,73)(24,36,82,70,74), (1,84)(2,79)(3,80)(4,81)(5,82)(6,83)(7,56,96,44)(8,57,91,45)(9,58,92,46)(10,59,93,47)(11,60,94,48)(12,55,95,43)(13,49,117,64)(14,50,118,65)(15,51,119,66)(16,52,120,61)(17,53,115,62)(18,54,116,63)(19,30,75,114)(20,25,76,109)(21,26,77,110)(22,27,78,111)(23,28,73,112)(24,29,74,113)(31,86,71,40)(32,87,72,41)(33,88,67,42)(34,89,68,37)(35,90,69,38)(36,85,70,39)(97,105)(98,106)(99,107)(100,108)(101,103)(102,104)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,81,97,108)(2,82,98,103)(3,83,99,104)(4,84,100,105)(5,79,101,106)(6,80,102,107)(7,109,35,17)(8,110,36,18)(9,111,31,13)(10,112,32,14)(11,113,33,15)(12,114,34,16)(19,55,52,89)(20,56,53,90)(21,57,54,85)(22,58,49,86)(23,59,50,87)(24,60,51,88)(25,69,115,96)(26,70,116,91)(27,71,117,92)(28,72,118,93)(29,67,119,94)(30,68,120,95)(37,75,43,61)(38,76,44,62)(39,77,45,63)(40,78,46,64)(41,73,47,65)(42,74,48,66), (1,25,41,87,109)(2,26,42,88,110)(3,27,37,89,111)(4,28,38,90,112)(5,29,39,85,113)(6,30,40,86,114)(7,108,96,65,50)(8,103,91,66,51)(9,104,92,61,52)(10,105,93,62,53)(11,106,94,63,54)(12,107,95,64,49)(13,99,117,43,55)(14,100,118,44,56)(15,101,119,45,57)(16,102,120,46,58)(17,97,115,47,59)(18,98,116,48,60)(19,31,83,71,75)(20,32,84,72,76)(21,33,79,67,77)(22,34,80,68,78)(23,35,81,69,73)(24,36,82,70,74), (1,84)(2,79)(3,80)(4,81)(5,82)(6,83)(7,56,96,44)(8,57,91,45)(9,58,92,46)(10,59,93,47)(11,60,94,48)(12,55,95,43)(13,49,117,64)(14,50,118,65)(15,51,119,66)(16,52,120,61)(17,53,115,62)(18,54,116,63)(19,30,75,114)(20,25,76,109)(21,26,77,110)(22,27,78,111)(23,28,73,112)(24,29,74,113)(31,86,71,40)(32,87,72,41)(33,88,67,42)(34,89,68,37)(35,90,69,38)(36,85,70,39)(97,105)(98,106)(99,107)(100,108)(101,103)(102,104) );
G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,81,97,108),(2,82,98,103),(3,83,99,104),(4,84,100,105),(5,79,101,106),(6,80,102,107),(7,109,35,17),(8,110,36,18),(9,111,31,13),(10,112,32,14),(11,113,33,15),(12,114,34,16),(19,55,52,89),(20,56,53,90),(21,57,54,85),(22,58,49,86),(23,59,50,87),(24,60,51,88),(25,69,115,96),(26,70,116,91),(27,71,117,92),(28,72,118,93),(29,67,119,94),(30,68,120,95),(37,75,43,61),(38,76,44,62),(39,77,45,63),(40,78,46,64),(41,73,47,65),(42,74,48,66)], [(1,25,41,87,109),(2,26,42,88,110),(3,27,37,89,111),(4,28,38,90,112),(5,29,39,85,113),(6,30,40,86,114),(7,108,96,65,50),(8,103,91,66,51),(9,104,92,61,52),(10,105,93,62,53),(11,106,94,63,54),(12,107,95,64,49),(13,99,117,43,55),(14,100,118,44,56),(15,101,119,45,57),(16,102,120,46,58),(17,97,115,47,59),(18,98,116,48,60),(19,31,83,71,75),(20,32,84,72,76),(21,33,79,67,77),(22,34,80,68,78),(23,35,81,69,73),(24,36,82,70,74)], [(1,84),(2,79),(3,80),(4,81),(5,82),(6,83),(7,56,96,44),(8,57,91,45),(9,58,92,46),(10,59,93,47),(11,60,94,48),(12,55,95,43),(13,49,117,64),(14,50,118,65),(15,51,119,66),(16,52,120,61),(17,53,115,62),(18,54,116,63),(19,30,75,114),(20,25,76,109),(21,26,77,110),(22,27,78,111),(23,28,73,112),(24,29,74,113),(31,86,71,40),(32,87,72,41),(33,88,67,42),(34,89,68,37),(35,90,69,38),(36,85,70,39),(97,105),(98,106),(99,107),(100,108),(101,103),(102,104)])
Matrix representation ►G ⊆ GL8(𝔽61)
48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 47 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 |
42 | 56 | 0 | 0 | 0 | 0 | 0 | 0 |
48 | 19 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 42 | 56 | 0 | 0 | 0 | 0 |
0 | 0 | 48 | 19 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 60 | 60 | 60 | 60 |
26 | 55 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 35 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 26 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 60 | 60 | 60 |
G:=sub<GL(8,GF(61))| [48,0,0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47],[42,48,0,0,0,0,0,0,56,19,0,0,0,0,0,0,0,0,42,48,0,0,0,0,0,0,56,19,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,1,0,0,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,1,60],[26,1,0,0,0,0,0,0,55,35,0,0,0,0,0,0,0,0,35,60,0,0,0,0,0,0,6,26,0,0,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,60,0,0,0,0,0,1,0,60] >;
84 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | ··· | 4L | 5 | 6A | ··· | 6F | 6G | ··· | 6N | 10A | 10B | 10C | 12A | 12B | 12C | 12D | 12E | ··· | 12X | 15A | 15B | 20A | 20B | 20C | 20D | 30A | ··· | 30F | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | ··· | 4 | 5 | 6 | ··· | 6 | 6 | ··· | 6 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 1 | 2 | 2 | 10 | ··· | 10 | 4 | 1 | ··· | 1 | 5 | ··· | 5 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | C12 | D4 | Q8 | C3×D4 | C3×Q8 | F5 | C2×F5 | C2×F5 | C3×F5 | C4⋊F5 | C6×F5 | C6×F5 | C3×C4⋊F5 |
kernel | C6×C4⋊F5 | C3×C4⋊F5 | D5×C2×C12 | C2×C6×F5 | C2×C4⋊F5 | D5×C12 | C6×Dic5 | C2×C60 | C4⋊F5 | C2×C4×D5 | C22×F5 | C4×D5 | C2×Dic5 | C2×C20 | C6×D5 | C6×D5 | D10 | D10 | C2×C12 | C12 | C2×C6 | C2×C4 | C6 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 2 | 4 | 2 | 2 | 8 | 2 | 4 | 8 | 4 | 4 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 2 | 4 | 4 | 2 | 8 |
In GAP, Magma, Sage, TeX
C_6\times C_4\rtimes F_5
% in TeX
G:=Group("C6xC4:F5");
// GroupNames label
G:=SmallGroup(480,1051);
// by ID
G=gap.SmallGroup(480,1051);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,168,1094,268,9414,818]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations