extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic5).1D6 = Dic15.Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).1D6 | 480,412 |
(C2×Dic5).2D6 = C4⋊Dic3⋊D5 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).2D6 | 480,413 |
(C2×Dic5).3D6 = Dic15.2Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).3D6 | 480,415 |
(C2×Dic5).4D6 = D6⋊C4.D5 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).4D6 | 480,417 |
(C2×Dic5).5D6 = C60⋊5C4⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).5D6 | 480,418 |
(C2×Dic5).6D6 = C4⋊Dic5⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).6D6 | 480,421 |
(C2×Dic5).7D6 = D6⋊Dic5⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).7D6 | 480,427 |
(C2×Dic5).8D6 = D6⋊Dic10 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).8D6 | 480,428 |
(C2×Dic5).9D6 = Dic3.D20 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).9D6 | 480,429 |
(C2×Dic5).10D6 = D30.34D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).10D6 | 480,430 |
(C2×Dic5).11D6 = D30.35D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).11D6 | 480,431 |
(C2×Dic5).12D6 = (C4×Dic3)⋊D5 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).12D6 | 480,439 |
(C2×Dic5).13D6 = C60.45D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).13D6 | 480,441 |
(C2×Dic5).14D6 = (C4×Dic15)⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).14D6 | 480,442 |
(C2×Dic5).15D6 = D6⋊Dic5.C2 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).15D6 | 480,443 |
(C2×Dic5).16D6 = C60.46D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).16D6 | 480,445 |
(C2×Dic5).17D6 = C60.89D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).17D6 | 480,446 |
(C2×Dic5).18D6 = C60.47D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).18D6 | 480,450 |
(C2×Dic5).19D6 = D30⋊8Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).19D6 | 480,453 |
(C2×Dic5).20D6 = Dic3.3Dic10 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).20D6 | 480,455 |
(C2×Dic5).21D6 = C10.D4⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).21D6 | 480,456 |
(C2×Dic5).22D6 = C60.6Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).22D6 | 480,457 |
(C2×Dic5).23D6 = Dic15.4Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).23D6 | 480,458 |
(C2×Dic5).24D6 = D30⋊9Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).24D6 | 480,459 |
(C2×Dic5).25D6 = C12.Dic10 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).25D6 | 480,460 |
(C2×Dic5).26D6 = Dic15⋊8Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).26D6 | 480,461 |
(C2×Dic5).27D6 = C60.48D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).27D6 | 480,465 |
(C2×Dic5).28D6 = D30⋊10Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).28D6 | 480,466 |
(C2×Dic5).29D6 = D30⋊Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).29D6 | 480,487 |
(C2×Dic5).30D6 = D10.16D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).30D6 | 480,489 |
(C2×Dic5).31D6 = D10.17D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).31D6 | 480,490 |
(C2×Dic5).32D6 = D30⋊2Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).32D6 | 480,495 |
(C2×Dic5).33D6 = D30⋊D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).33D6 | 480,496 |
(C2×Dic5).34D6 = D10⋊1Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).34D6 | 480,497 |
(C2×Dic5).35D6 = D10⋊2Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).35D6 | 480,498 |
(C2×Dic5).36D6 = D30⋊3Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).36D6 | 480,500 |
(C2×Dic5).37D6 = D30⋊4Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).37D6 | 480,505 |
(C2×Dic5).38D6 = Dic15.D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).38D6 | 480,506 |
(C2×Dic5).39D6 = D10⋊4Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).39D6 | 480,507 |
(C2×Dic5).40D6 = D6⋊3Dic10 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).40D6 | 480,508 |
(C2×Dic5).41D6 = D30.6D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).41D6 | 480,509 |
(C2×Dic5).42D6 = D6⋊4Dic10 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).42D6 | 480,512 |
(C2×Dic5).43D6 = D30.7D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).43D6 | 480,514 |
(C2×Dic5).44D6 = D10⋊C4⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).44D6 | 480,528 |
(C2×Dic5).45D6 = D6⋊D20 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).45D6 | 480,530 |
(C2×Dic5).46D6 = C60⋊6D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).46D6 | 480,536 |
(C2×Dic5).47D6 = D30⋊12D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).47D6 | 480,537 |
(C2×Dic5).48D6 = Dic15.31D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).48D6 | 480,540 |
(C2×Dic5).49D6 = C20⋊2D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).49D6 | 480,542 |
(C2×Dic5).50D6 = C20⋊4Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).50D6 | 480,545 |
(C2×Dic5).51D6 = C20⋊Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).51D6 | 480,546 |
(C2×Dic5).52D6 = Dic15.19D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).52D6 | 480,602 |
(C2×Dic5).53D6 = C23.13(S3×D5) | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).53D6 | 480,606 |
(C2×Dic5).54D6 = C23.14(S3×D5) | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).54D6 | 480,607 |
(C2×Dic5).55D6 = (C2×C30).D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).55D6 | 480,612 |
(C2×Dic5).56D6 = C6.(C2×D20) | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).56D6 | 480,613 |
(C2×Dic5).57D6 = C10.(C2×D12) | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).57D6 | 480,618 |
(C2×Dic5).58D6 = (C2×C10).D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).58D6 | 480,619 |
(C2×Dic5).59D6 = C23.17(S3×D5) | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).59D6 | 480,624 |
(C2×Dic5).60D6 = (C6×D5)⋊D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).60D6 | 480,625 |
(C2×Dic5).61D6 = Dic15⋊3D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).61D6 | 480,626 |
(C2×Dic5).62D6 = D30⋊7D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).62D6 | 480,633 |
(C2×Dic5).63D6 = Dic15⋊4D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).63D6 | 480,634 |
(C2×Dic5).64D6 = D30.16D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).64D6 | 480,638 |
(C2×Dic5).65D6 = (C2×C6)⋊D20 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).65D6 | 480,645 |
(C2×Dic5).66D6 = Dic15⋊18D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).66D6 | 480,647 |
(C2×Dic5).67D6 = (C2×C10)⋊8Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).67D6 | 480,651 |
(C2×Dic5).68D6 = Dic15.48D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).68D6 | 480,652 |
(C2×Dic5).69D6 = C30.C24 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 4 | (C2xDic5).69D6 | 480,1080 |
(C2×Dic5).70D6 = C15⋊2- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 8- | (C2xDic5).70D6 | 480,1096 |
(C2×Dic5).71D6 = Dic5.D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 120 | 8+ | (C2xDic5).71D6 | 480,250 |
(C2×Dic5).72D6 = Dic5.4D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 8- | (C2xDic5).72D6 | 480,251 |
(C2×Dic5).73D6 = (C2×C60).C4 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 4 | (C2xDic5).73D6 | 480,310 |
(C2×Dic5).74D6 = C5⋊(C12.D4) | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 120 | 4 | (C2xDic5).74D6 | 480,318 |
(C2×Dic5).75D6 = C5⋊C8.D6 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 8 | (C2xDic5).75D6 | 480,1003 |
(C2×Dic5).76D6 = D15⋊C8⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 8 | (C2xDic5).76D6 | 480,1005 |
(C2×Dic5).77D6 = Dic10.Dic3 | φ: D6/C3 → C22 ⊆ Out C2×Dic5 | 240 | 8 | (C2xDic5).77D6 | 480,1066 |
(C2×Dic5).78D6 = Dic3⋊5Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).78D6 | 480,400 |
(C2×Dic5).79D6 = Dic15⋊5Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).79D6 | 480,401 |
(C2×Dic5).80D6 = (C2×C20).D6 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).80D6 | 480,402 |
(C2×Dic5).81D6 = Dic15⋊1Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).81D6 | 480,403 |
(C2×Dic5).82D6 = Dic3⋊Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).82D6 | 480,404 |
(C2×Dic5).83D6 = Dic15⋊Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).83D6 | 480,405 |
(C2×Dic5).84D6 = Dic3×Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).84D6 | 480,406 |
(C2×Dic5).85D6 = Dic15⋊6Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).85D6 | 480,407 |
(C2×Dic5).86D6 = Dic5.1Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).86D6 | 480,410 |
(C2×Dic5).87D6 = Dic5.2Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).87D6 | 480,411 |
(C2×Dic5).88D6 = (S3×C20)⋊5C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).88D6 | 480,414 |
(C2×Dic5).89D6 = Dic30⋊14C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).89D6 | 480,416 |
(C2×Dic5).90D6 = Dic3.Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).90D6 | 480,419 |
(C2×Dic5).91D6 = Dic15⋊7Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).91D6 | 480,420 |
(C2×Dic5).92D6 = Dic3.2Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).92D6 | 480,422 |
(C2×Dic5).93D6 = (C4×D15)⋊8C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).93D6 | 480,423 |
(C2×Dic5).94D6 = D30.D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).94D6 | 480,432 |
(C2×Dic5).95D6 = (C2×C12).D10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).95D6 | 480,437 |
(C2×Dic5).96D6 = (C2×C60).C22 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).96D6 | 480,438 |
(C2×Dic5).97D6 = (D5×Dic3)⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).97D6 | 480,469 |
(C2×Dic5).98D6 = D10.19(C4×S3) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).98D6 | 480,470 |
(C2×Dic5).99D6 = Dic3⋊4D20 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).99D6 | 480,471 |
(C2×Dic5).100D6 = Dic15⋊13D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).100D6 | 480,472 |
(C2×Dic5).101D6 = S3×C10.D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).101D6 | 480,475 |
(C2×Dic5).102D6 = (S3×Dic5)⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).102D6 | 480,476 |
(C2×Dic5).103D6 = D30.23(C2×C4) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).103D6 | 480,479 |
(C2×Dic5).104D6 = D30.Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).104D6 | 480,480 |
(C2×Dic5).105D6 = Dic15⋊14D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).105D6 | 480,482 |
(C2×Dic5).106D6 = D6⋊1Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).106D6 | 480,486 |
(C2×Dic5).107D6 = Dic5⋊D12 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).107D6 | 480,492 |
(C2×Dic5).108D6 = D6⋊2Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).108D6 | 480,493 |
(C2×Dic5).109D6 = (C2×D12).D5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).109D6 | 480,499 |
(C2×Dic5).110D6 = S3×C4⋊Dic5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).110D6 | 480,502 |
(C2×Dic5).111D6 = D6.D20 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).111D6 | 480,503 |
(C2×Dic5).112D6 = D60⋊14C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).112D6 | 480,504 |
(C2×Dic5).113D6 = Dic15⋊8D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).113D6 | 480,511 |
(C2×Dic5).114D6 = D30.2Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).114D6 | 480,513 |
(C2×Dic5).115D6 = C15⋊17(C4×D4) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).115D6 | 480,517 |
(C2×Dic5).116D6 = Dic15⋊9D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).116D6 | 480,518 |
(C2×Dic5).117D6 = C15⋊22(C4×D4) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).117D6 | 480,522 |
(C2×Dic5).118D6 = Dic15⋊2D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).118D6 | 480,529 |
(C2×Dic5).119D6 = (C2×Dic6)⋊D5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).119D6 | 480,531 |
(C2×Dic5).120D6 = D6.9D20 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).120D6 | 480,533 |
(C2×Dic5).121D6 = D30⋊2D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).121D6 | 480,535 |
(C2×Dic5).122D6 = Dic15.10D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).122D6 | 480,538 |
(C2×Dic5).123D6 = C23.D5⋊S3 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).123D6 | 480,601 |
(C2×Dic5).124D6 = C23.26(S3×D5) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).124D6 | 480,605 |
(C2×Dic5).125D6 = C23.48(S3×D5) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).125D6 | 480,608 |
(C2×Dic5).126D6 = D30⋊6D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).126D6 | 480,609 |
(C2×Dic5).127D6 = C6.(D4×D5) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).127D6 | 480,610 |
(C2×Dic5).128D6 = Dic3×C5⋊D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).128D6 | 480,629 |
(C2×Dic5).129D6 = (S3×C10).D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).129D6 | 480,631 |
(C2×Dic5).130D6 = C15⋊28(C4×D4) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).130D6 | 480,632 |
(C2×Dic5).131D6 = Dic15⋊16D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).131D6 | 480,635 |
(C2×Dic5).132D6 = Dic15⋊17D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).132D6 | 480,636 |
(C2×Dic5).133D6 = (S3×C10)⋊D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).133D6 | 480,641 |
(C2×Dic5).134D6 = Dic15⋊5D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).134D6 | 480,643 |
(C2×Dic5).135D6 = C2×S3×Dic10 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).135D6 | 480,1078 |
(C2×Dic5).136D6 = C2×D12⋊D5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).136D6 | 480,1079 |
(C2×Dic5).137D6 = C2×D60⋊C2 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).137D6 | 480,1081 |
(C2×Dic5).138D6 = C2×D15⋊Q8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).138D6 | 480,1082 |
(C2×Dic5).139D6 = C2×Dic5.D6 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).139D6 | 480,1113 |
(C2×Dic5).140D6 = C2×C30.C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).140D6 | 480,1114 |
(C2×Dic5).141D6 = Dic3×C5⋊C8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).141D6 | 480,244 |
(C2×Dic5).142D6 = C30.M4(2) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).142D6 | 480,245 |
(C2×Dic5).143D6 = Dic5.22D12 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).143D6 | 480,246 |
(C2×Dic5).144D6 = D30⋊C8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).144D6 | 480,247 |
(C2×Dic5).145D6 = C30.4M4(2) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).145D6 | 480,252 |
(C2×Dic5).146D6 = Dic15⋊C8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).146D6 | 480,253 |
(C2×Dic5).147D6 = C2×S3×C5⋊C8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).147D6 | 480,1002 |
(C2×Dic5).148D6 = S3×C22.F5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 120 | 8- | (C2xDic5).148D6 | 480,1004 |
(C2×Dic5).149D6 = C2×D15⋊C8 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).149D6 | 480,1006 |
(C2×Dic5).150D6 = D15⋊2M4(2) | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 120 | 8+ | (C2xDic5).150D6 | 480,1007 |
(C2×Dic5).151D6 = C2×D6.F5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).151D6 | 480,1008 |
(C2×Dic5).152D6 = C2×Dic3.F5 | φ: D6/S3 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).152D6 | 480,1009 |
(C2×Dic5).153D6 = Dic5⋊5Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).153D6 | 480,399 |
(C2×Dic5).154D6 = Dic5×Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).154D6 | 480,408 |
(C2×Dic5).155D6 = Dic30⋊17C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).155D6 | 480,409 |
(C2×Dic5).156D6 = Dic3⋊C4⋊D5 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).156D6 | 480,424 |
(C2×Dic5).157D6 = D10⋊Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).157D6 | 480,425 |
(C2×Dic5).158D6 = Dic5.8D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).158D6 | 480,426 |
(C2×Dic5).159D6 = (D5×C12)⋊C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).159D6 | 480,433 |
(C2×Dic5).160D6 = C60.67D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).160D6 | 480,435 |
(C2×Dic5).161D6 = C60.68D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).161D6 | 480,436 |
(C2×Dic5).162D6 = (S3×C20)⋊7C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).162D6 | 480,447 |
(C2×Dic5).163D6 = C5⋊(C42⋊3S3) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).163D6 | 480,448 |
(C2×Dic5).164D6 = C60.69D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).164D6 | 480,449 |
(C2×Dic5).165D6 = C60.70D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).165D6 | 480,451 |
(C2×Dic5).166D6 = Dic5⋊Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).166D6 | 480,452 |
(C2×Dic5).167D6 = Dic5.7Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).167D6 | 480,454 |
(C2×Dic5).168D6 = (C4×D15)⋊10C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).168D6 | 480,462 |
(C2×Dic5).169D6 = (C4×Dic5)⋊S3 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).169D6 | 480,463 |
(C2×Dic5).170D6 = C20.Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).170D6 | 480,464 |
(C2×Dic5).171D6 = D5×Dic3⋊C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).171D6 | 480,468 |
(C2×Dic5).172D6 = D6.(C4×D5) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).172D6 | 480,474 |
(C2×Dic5).173D6 = D30.C2⋊C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).173D6 | 480,478 |
(C2×Dic5).174D6 = Dic5⋊4D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).174D6 | 480,481 |
(C2×Dic5).175D6 = D5×C4⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).175D6 | 480,488 |
(C2×Dic5).176D6 = Dic5×D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).176D6 | 480,491 |
(C2×Dic5).177D6 = D60⋊17C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).177D6 | 480,494 |
(C2×Dic5).178D6 = C4×C15⋊D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).178D6 | 480,515 |
(C2×Dic5).179D6 = C4×C3⋊D20 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).179D6 | 480,519 |
(C2×Dic5).180D6 = C4×C5⋊D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).180D6 | 480,521 |
(C2×Dic5).181D6 = D6⋊C4⋊D5 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).181D6 | 480,523 |
(C2×Dic5).182D6 = D10⋊D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).182D6 | 480,524 |
(C2×Dic5).183D6 = C60⋊D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).183D6 | 480,525 |
(C2×Dic5).184D6 = C12⋊7D20 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).184D6 | 480,526 |
(C2×Dic5).185D6 = C20⋊D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).185D6 | 480,527 |
(C2×Dic5).186D6 = C4×C15⋊Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).186D6 | 480,543 |
(C2×Dic5).187D6 = C60⋊Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).187D6 | 480,544 |
(C2×Dic5).188D6 = C30.(C2×D4) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).188D6 | 480,615 |
(C2×Dic5).189D6 = C2×C30.Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).189D6 | 480,617 |
(C2×Dic5).190D6 = C2×Dic15⋊5C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).190D6 | 480,620 |
(C2×Dic5).191D6 = C2×C6.Dic10 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).191D6 | 480,621 |
(C2×Dic5).192D6 = C6.D4⋊D5 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).192D6 | 480,622 |
(C2×Dic5).193D6 = Dic5×C3⋊D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).193D6 | 480,627 |
(C2×Dic5).194D6 = C15⋊26(C4×D4) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).194D6 | 480,628 |
(C2×Dic5).195D6 = (C2×C10)⋊4D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).195D6 | 480,642 |
(C2×Dic5).196D6 = (C2×C30)⋊Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).196D6 | 480,650 |
(C2×Dic5).197D6 = C2×D5×Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).197D6 | 480,1073 |
(C2×Dic5).198D6 = C2×D6.D10 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).198D6 | 480,1083 |
(C2×Dic5).199D6 = C22×C15⋊Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).199D6 | 480,1121 |
(C2×Dic5).200D6 = C4×C15⋊C8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).200D6 | 480,305 |
(C2×Dic5).201D6 = C60⋊C8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).201D6 | 480,306 |
(C2×Dic5).202D6 = C30.11C42 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).202D6 | 480,307 |
(C2×Dic5).203D6 = C30.7M4(2) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).203D6 | 480,308 |
(C2×Dic5).204D6 = Dic5.13D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).204D6 | 480,309 |
(C2×Dic5).205D6 = C30.22M4(2) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).205D6 | 480,317 |
(C2×Dic5).206D6 = C2×C60.C4 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).206D6 | 480,1060 |
(C2×Dic5).207D6 = C2×C12.F5 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).207D6 | 480,1061 |
(C2×Dic5).208D6 = C60.59(C2×C4) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 120 | 4 | (C2xDic5).208D6 | 480,1062 |
(C2×Dic5).209D6 = C22×C15⋊C8 | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 480 | | (C2xDic5).209D6 | 480,1070 |
(C2×Dic5).210D6 = C2×C15⋊8M4(2) | φ: D6/C6 → C2 ⊆ Out C2×Dic5 | 240 | | (C2xDic5).210D6 | 480,1071 |
(C2×Dic5).211D6 = (C4×D5)⋊Dic3 | φ: trivial image | 240 | | (C2xDic5).211D6 | 480,434 |
(C2×Dic5).212D6 = C4×D5×Dic3 | φ: trivial image | 240 | | (C2xDic5).212D6 | 480,467 |
(C2×Dic5).213D6 = C4×S3×Dic5 | φ: trivial image | 240 | | (C2xDic5).213D6 | 480,473 |
(C2×Dic5).214D6 = C4×D30.C2 | φ: trivial image | 240 | | (C2xDic5).214D6 | 480,477 |
(C2×Dic5).215D6 = D6⋊(C4×D5) | φ: trivial image | 240 | | (C2xDic5).215D6 | 480,516 |
(C2×Dic5).216D6 = C15⋊20(C4×D4) | φ: trivial image | 240 | | (C2xDic5).216D6 | 480,520 |
(C2×Dic5).217D6 = C2×Dic3×Dic5 | φ: trivial image | 480 | | (C2xDic5).217D6 | 480,603 |
(C2×Dic5).218D6 = (C6×Dic5)⋊7C4 | φ: trivial image | 240 | | (C2xDic5).218D6 | 480,604 |
(C2×Dic5).219D6 = C2×D12⋊5D5 | φ: trivial image | 240 | | (C2xDic5).219D6 | 480,1084 |
(C2×Dic5).220D6 = C2×C12.28D10 | φ: trivial image | 240 | | (C2xDic5).220D6 | 480,1085 |