Copied to
clipboard

G = Q8.10D12order 192 = 26·3

5th non-split extension by Q8 of D12 acting via D12/C12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.5D12, C24.84D4, Q8.10D12, M4(2).35D6, C8○D4.3S3, (C2×C8).82D6, C4○D4.49D6, (C3×D4).22D4, C4.21(C2×D12), C12.44(C2×D4), (C3×Q8).22D4, C33(D4.5D4), C8.41(C3⋊D4), C24.C416C2, (C2×Dic12)⋊13C2, C6.78(C4⋊D4), (C2×C24).68C22, Q8.14D6.1C2, C12.47D414C2, C2.26(C127D4), (C2×C12).423C23, C22.10(C4○D12), C4.Dic3.18C22, (C2×Dic6).118C22, (C3×M4(2)).38C22, (C3×C8○D4).1C2, (C2×C6).8(C4○D4), C4.119(C2×C3⋊D4), (C2×C4).125(C22×S3), (C3×C4○D4).38C22, SmallGroup(192,702)

Series: Derived Chief Lower central Upper central

C1C2×C12 — Q8.10D12
C1C3C6C12C2×C12C2×Dic6C2×Dic12 — Q8.10D12
C3C6C2×C12 — Q8.10D12
C1C2C2×C4C8○D4

Generators and relations for Q8.10D12
 G = < a,b,c,d | a4=1, b2=c12=d2=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c11 >

Subgroups: 256 in 100 conjugacy classes, 39 normal (31 characteristic)
C1, C2, C2 [×2], C3, C4 [×2], C4 [×3], C22, C22, C6, C6 [×2], C8 [×2], C8 [×3], C2×C4, C2×C4 [×3], D4, D4, Q8, Q8 [×4], Dic3 [×2], C12 [×2], C12, C2×C6, C2×C6, C2×C8, C2×C8, M4(2), M4(2) [×3], SD16 [×2], Q16 [×4], C2×Q8 [×2], C4○D4, C3⋊C8 [×2], C24 [×2], C24, Dic6 [×4], C2×Dic3 [×2], C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4.10D4 [×2], C8.C4, C8○D4, C2×Q16, C8.C22 [×2], Dic12 [×2], C4.Dic3 [×2], D4.S3 [×2], C3⋊Q16 [×2], C2×C24, C2×C24, C3×M4(2), C3×M4(2), C2×Dic6 [×2], C3×C4○D4, D4.5D4, C24.C4, C12.47D4 [×2], C2×Dic12, Q8.14D6 [×2], C3×C8○D4, Q8.10D12
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×4], C23, D6 [×3], C2×D4 [×2], C4○D4, D12 [×2], C3⋊D4 [×2], C22×S3, C4⋊D4, C2×D12, C4○D12, C2×C3⋊D4, D4.5D4, C127D4, Q8.10D12

Smallest permutation representation of Q8.10D12
On 96 points
Generators in S96
(1 66 13 54)(2 67 14 55)(3 68 15 56)(4 69 16 57)(5 70 17 58)(6 71 18 59)(7 72 19 60)(8 49 20 61)(9 50 21 62)(10 51 22 63)(11 52 23 64)(12 53 24 65)(25 95 37 83)(26 96 38 84)(27 73 39 85)(28 74 40 86)(29 75 41 87)(30 76 42 88)(31 77 43 89)(32 78 44 90)(33 79 45 91)(34 80 46 92)(35 81 47 93)(36 82 48 94)
(1 7 13 19)(2 8 14 20)(3 9 15 21)(4 10 16 22)(5 11 17 23)(6 12 18 24)(25 77 37 89)(26 78 38 90)(27 79 39 91)(28 80 40 92)(29 81 41 93)(30 82 42 94)(31 83 43 95)(32 84 44 96)(33 85 45 73)(34 86 46 74)(35 87 47 75)(36 88 48 76)(49 67 61 55)(50 68 62 56)(51 69 63 57)(52 70 64 58)(53 71 65 59)(54 72 66 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 92 13 80)(2 91 14 79)(3 90 15 78)(4 89 16 77)(5 88 17 76)(6 87 18 75)(7 86 19 74)(8 85 20 73)(9 84 21 96)(10 83 22 95)(11 82 23 94)(12 81 24 93)(25 51 37 63)(26 50 38 62)(27 49 39 61)(28 72 40 60)(29 71 41 59)(30 70 42 58)(31 69 43 57)(32 68 44 56)(33 67 45 55)(34 66 46 54)(35 65 47 53)(36 64 48 52)

G:=sub<Sym(96)| (1,66,13,54)(2,67,14,55)(3,68,15,56)(4,69,16,57)(5,70,17,58)(6,71,18,59)(7,72,19,60)(8,49,20,61)(9,50,21,62)(10,51,22,63)(11,52,23,64)(12,53,24,65)(25,95,37,83)(26,96,38,84)(27,73,39,85)(28,74,40,86)(29,75,41,87)(30,76,42,88)(31,77,43,89)(32,78,44,90)(33,79,45,91)(34,80,46,92)(35,81,47,93)(36,82,48,94), (1,7,13,19)(2,8,14,20)(3,9,15,21)(4,10,16,22)(5,11,17,23)(6,12,18,24)(25,77,37,89)(26,78,38,90)(27,79,39,91)(28,80,40,92)(29,81,41,93)(30,82,42,94)(31,83,43,95)(32,84,44,96)(33,85,45,73)(34,86,46,74)(35,87,47,75)(36,88,48,76)(49,67,61,55)(50,68,62,56)(51,69,63,57)(52,70,64,58)(53,71,65,59)(54,72,66,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,92,13,80)(2,91,14,79)(3,90,15,78)(4,89,16,77)(5,88,17,76)(6,87,18,75)(7,86,19,74)(8,85,20,73)(9,84,21,96)(10,83,22,95)(11,82,23,94)(12,81,24,93)(25,51,37,63)(26,50,38,62)(27,49,39,61)(28,72,40,60)(29,71,41,59)(30,70,42,58)(31,69,43,57)(32,68,44,56)(33,67,45,55)(34,66,46,54)(35,65,47,53)(36,64,48,52)>;

G:=Group( (1,66,13,54)(2,67,14,55)(3,68,15,56)(4,69,16,57)(5,70,17,58)(6,71,18,59)(7,72,19,60)(8,49,20,61)(9,50,21,62)(10,51,22,63)(11,52,23,64)(12,53,24,65)(25,95,37,83)(26,96,38,84)(27,73,39,85)(28,74,40,86)(29,75,41,87)(30,76,42,88)(31,77,43,89)(32,78,44,90)(33,79,45,91)(34,80,46,92)(35,81,47,93)(36,82,48,94), (1,7,13,19)(2,8,14,20)(3,9,15,21)(4,10,16,22)(5,11,17,23)(6,12,18,24)(25,77,37,89)(26,78,38,90)(27,79,39,91)(28,80,40,92)(29,81,41,93)(30,82,42,94)(31,83,43,95)(32,84,44,96)(33,85,45,73)(34,86,46,74)(35,87,47,75)(36,88,48,76)(49,67,61,55)(50,68,62,56)(51,69,63,57)(52,70,64,58)(53,71,65,59)(54,72,66,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,92,13,80)(2,91,14,79)(3,90,15,78)(4,89,16,77)(5,88,17,76)(6,87,18,75)(7,86,19,74)(8,85,20,73)(9,84,21,96)(10,83,22,95)(11,82,23,94)(12,81,24,93)(25,51,37,63)(26,50,38,62)(27,49,39,61)(28,72,40,60)(29,71,41,59)(30,70,42,58)(31,69,43,57)(32,68,44,56)(33,67,45,55)(34,66,46,54)(35,65,47,53)(36,64,48,52) );

G=PermutationGroup([(1,66,13,54),(2,67,14,55),(3,68,15,56),(4,69,16,57),(5,70,17,58),(6,71,18,59),(7,72,19,60),(8,49,20,61),(9,50,21,62),(10,51,22,63),(11,52,23,64),(12,53,24,65),(25,95,37,83),(26,96,38,84),(27,73,39,85),(28,74,40,86),(29,75,41,87),(30,76,42,88),(31,77,43,89),(32,78,44,90),(33,79,45,91),(34,80,46,92),(35,81,47,93),(36,82,48,94)], [(1,7,13,19),(2,8,14,20),(3,9,15,21),(4,10,16,22),(5,11,17,23),(6,12,18,24),(25,77,37,89),(26,78,38,90),(27,79,39,91),(28,80,40,92),(29,81,41,93),(30,82,42,94),(31,83,43,95),(32,84,44,96),(33,85,45,73),(34,86,46,74),(35,87,47,75),(36,88,48,76),(49,67,61,55),(50,68,62,56),(51,69,63,57),(52,70,64,58),(53,71,65,59),(54,72,66,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,92,13,80),(2,91,14,79),(3,90,15,78),(4,89,16,77),(5,88,17,76),(6,87,18,75),(7,86,19,74),(8,85,20,73),(9,84,21,96),(10,83,22,95),(11,82,23,94),(12,81,24,93),(25,51,37,63),(26,50,38,62),(27,49,39,61),(28,72,40,60),(29,71,41,59),(30,70,42,58),(31,69,43,57),(32,68,44,56),(33,67,45,55),(34,66,46,54),(35,65,47,53),(36,64,48,52)])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E6A6B6C6D8A8B8C8D8E8F8G12A12B12C12D12E24A24B24C24D24E···24J
order12223444446666888888812121212122424242424···24
size11242224242424442244424242244422224···4

36 irreducible representations

dim11111122222222222244
type+++++++++++++++--
imageC1C2C2C2C2C2S3D4D4D4D6D6D6C4○D4C3⋊D4D12D12C4○D12D4.5D4Q8.10D12
kernelQ8.10D12C24.C4C12.47D4C2×Dic12Q8.14D6C3×C8○D4C8○D4C24C3×D4C3×Q8C2×C8M4(2)C4○D4C2×C6C8D4Q8C22C3C1
# reps11212112111112422424

Matrix representation of Q8.10D12 in GL6(𝔽73)

100000
010000
000010
00117271
0072000
0011072
,
7200000
0720000
000100
0072000
00727212
00017272
,
6400000
3180000
00571600
00575700
0016164141
00570160
,
14430000
43590000
0070666
001306053
006067666
00136600

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,72,1,0,0,0,1,0,1,0,0,1,72,0,0,0,0,0,71,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,72,0,0,0,1,0,72,1,0,0,0,0,1,72,0,0,0,0,2,72],[64,31,0,0,0,0,0,8,0,0,0,0,0,0,57,57,16,57,0,0,16,57,16,0,0,0,0,0,41,16,0,0,0,0,41,0],[14,43,0,0,0,0,43,59,0,0,0,0,0,0,7,13,60,13,0,0,0,0,67,66,0,0,66,60,66,0,0,0,6,53,6,0] >;

Q8.10D12 in GAP, Magma, Sage, TeX

Q_8._{10}D_{12}
% in TeX

G:=Group("Q8.10D12");
// GroupNames label

G:=SmallGroup(192,702);
// by ID

G=gap.SmallGroup(192,702);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,344,254,1123,297,136,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=1,b^2=c^12=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^11>;
// generators/relations

׿
×
𝔽