Copied to
clipboard

G = C14.Q16order 224 = 25·7

2nd non-split extension by C14 of Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.2D4, C4.10D28, C14.4Q16, Dic143C4, C14.5SD16, C4⋊C4.3D7, C4.2(C4×D7), C28.4(C2×C4), C71(Q8⋊C4), (C2×C14).31D4, (C2×C4).36D14, C2.6(D14⋊C4), C2.2(D4.D7), C2.2(C7⋊Q16), C14.4(C22⋊C4), (C2×C28).11C22, (C2×Dic14).5C2, C22.15(C7⋊D4), (C2×C7⋊C8).3C2, (C7×C4⋊C4).3C2, SmallGroup(224,16)

Series: Derived Chief Lower central Upper central

C1C28 — C14.Q16
C1C7C14C2×C14C2×C28C2×Dic14 — C14.Q16
C7C14C28 — C14.Q16
C1C22C2×C4C4⋊C4

Generators and relations for C14.Q16
 G = < a,b,c | a14=b8=1, c2=a7b4, bab-1=a-1, ac=ca, cbc-1=a7b-1 >

4C4
14C4
14C4
2C2×C4
7Q8
7Q8
14C8
14Q8
14C2×C4
2Dic7
2Dic7
4C28
7C2×C8
7C2×Q8
2C7⋊C8
2C2×C28
2C2×Dic7
2Dic14
7Q8⋊C4

Smallest permutation representation of C14.Q16
Regular action on 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 68 99 147 174 91 131 124)(2 67 100 146 175 90 132 123)(3 66 101 145 176 89 133 122)(4 65 102 144 177 88 134 121)(5 64 103 143 178 87 135 120)(6 63 104 142 179 86 136 119)(7 62 105 141 180 85 137 118)(8 61 106 154 181 98 138 117)(9 60 107 153 182 97 139 116)(10 59 108 152 169 96 140 115)(11 58 109 151 170 95 127 114)(12 57 110 150 171 94 128 113)(13 70 111 149 172 93 129 126)(14 69 112 148 173 92 130 125)(15 189 33 223 77 157 209 45)(16 188 34 222 78 156 210 44)(17 187 35 221 79 155 197 43)(18 186 36 220 80 168 198 56)(19 185 37 219 81 167 199 55)(20 184 38 218 82 166 200 54)(21 183 39 217 83 165 201 53)(22 196 40 216 84 164 202 52)(23 195 41 215 71 163 203 51)(24 194 42 214 72 162 204 50)(25 193 29 213 73 161 205 49)(26 192 30 212 74 160 206 48)(27 191 31 211 75 159 207 47)(28 190 32 224 76 158 208 46)
(1 197 181 42)(2 198 182 29)(3 199 169 30)(4 200 170 31)(5 201 171 32)(6 202 172 33)(7 203 173 34)(8 204 174 35)(9 205 175 36)(10 206 176 37)(11 207 177 38)(12 208 178 39)(13 209 179 40)(14 210 180 41)(15 104 84 129)(16 105 71 130)(17 106 72 131)(18 107 73 132)(19 108 74 133)(20 109 75 134)(21 110 76 135)(22 111 77 136)(23 112 78 137)(24 99 79 138)(25 100 80 139)(26 101 81 140)(27 102 82 127)(28 103 83 128)(43 147 214 117)(44 148 215 118)(45 149 216 119)(46 150 217 120)(47 151 218 121)(48 152 219 122)(49 153 220 123)(50 154 221 124)(51 141 222 125)(52 142 223 126)(53 143 224 113)(54 144 211 114)(55 145 212 115)(56 146 213 116)(57 165 87 190)(58 166 88 191)(59 167 89 192)(60 168 90 193)(61 155 91 194)(62 156 92 195)(63 157 93 196)(64 158 94 183)(65 159 95 184)(66 160 96 185)(67 161 97 186)(68 162 98 187)(69 163 85 188)(70 164 86 189)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,68,99,147,174,91,131,124)(2,67,100,146,175,90,132,123)(3,66,101,145,176,89,133,122)(4,65,102,144,177,88,134,121)(5,64,103,143,178,87,135,120)(6,63,104,142,179,86,136,119)(7,62,105,141,180,85,137,118)(8,61,106,154,181,98,138,117)(9,60,107,153,182,97,139,116)(10,59,108,152,169,96,140,115)(11,58,109,151,170,95,127,114)(12,57,110,150,171,94,128,113)(13,70,111,149,172,93,129,126)(14,69,112,148,173,92,130,125)(15,189,33,223,77,157,209,45)(16,188,34,222,78,156,210,44)(17,187,35,221,79,155,197,43)(18,186,36,220,80,168,198,56)(19,185,37,219,81,167,199,55)(20,184,38,218,82,166,200,54)(21,183,39,217,83,165,201,53)(22,196,40,216,84,164,202,52)(23,195,41,215,71,163,203,51)(24,194,42,214,72,162,204,50)(25,193,29,213,73,161,205,49)(26,192,30,212,74,160,206,48)(27,191,31,211,75,159,207,47)(28,190,32,224,76,158,208,46), (1,197,181,42)(2,198,182,29)(3,199,169,30)(4,200,170,31)(5,201,171,32)(6,202,172,33)(7,203,173,34)(8,204,174,35)(9,205,175,36)(10,206,176,37)(11,207,177,38)(12,208,178,39)(13,209,179,40)(14,210,180,41)(15,104,84,129)(16,105,71,130)(17,106,72,131)(18,107,73,132)(19,108,74,133)(20,109,75,134)(21,110,76,135)(22,111,77,136)(23,112,78,137)(24,99,79,138)(25,100,80,139)(26,101,81,140)(27,102,82,127)(28,103,83,128)(43,147,214,117)(44,148,215,118)(45,149,216,119)(46,150,217,120)(47,151,218,121)(48,152,219,122)(49,153,220,123)(50,154,221,124)(51,141,222,125)(52,142,223,126)(53,143,224,113)(54,144,211,114)(55,145,212,115)(56,146,213,116)(57,165,87,190)(58,166,88,191)(59,167,89,192)(60,168,90,193)(61,155,91,194)(62,156,92,195)(63,157,93,196)(64,158,94,183)(65,159,95,184)(66,160,96,185)(67,161,97,186)(68,162,98,187)(69,163,85,188)(70,164,86,189)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,68,99,147,174,91,131,124)(2,67,100,146,175,90,132,123)(3,66,101,145,176,89,133,122)(4,65,102,144,177,88,134,121)(5,64,103,143,178,87,135,120)(6,63,104,142,179,86,136,119)(7,62,105,141,180,85,137,118)(8,61,106,154,181,98,138,117)(9,60,107,153,182,97,139,116)(10,59,108,152,169,96,140,115)(11,58,109,151,170,95,127,114)(12,57,110,150,171,94,128,113)(13,70,111,149,172,93,129,126)(14,69,112,148,173,92,130,125)(15,189,33,223,77,157,209,45)(16,188,34,222,78,156,210,44)(17,187,35,221,79,155,197,43)(18,186,36,220,80,168,198,56)(19,185,37,219,81,167,199,55)(20,184,38,218,82,166,200,54)(21,183,39,217,83,165,201,53)(22,196,40,216,84,164,202,52)(23,195,41,215,71,163,203,51)(24,194,42,214,72,162,204,50)(25,193,29,213,73,161,205,49)(26,192,30,212,74,160,206,48)(27,191,31,211,75,159,207,47)(28,190,32,224,76,158,208,46), (1,197,181,42)(2,198,182,29)(3,199,169,30)(4,200,170,31)(5,201,171,32)(6,202,172,33)(7,203,173,34)(8,204,174,35)(9,205,175,36)(10,206,176,37)(11,207,177,38)(12,208,178,39)(13,209,179,40)(14,210,180,41)(15,104,84,129)(16,105,71,130)(17,106,72,131)(18,107,73,132)(19,108,74,133)(20,109,75,134)(21,110,76,135)(22,111,77,136)(23,112,78,137)(24,99,79,138)(25,100,80,139)(26,101,81,140)(27,102,82,127)(28,103,83,128)(43,147,214,117)(44,148,215,118)(45,149,216,119)(46,150,217,120)(47,151,218,121)(48,152,219,122)(49,153,220,123)(50,154,221,124)(51,141,222,125)(52,142,223,126)(53,143,224,113)(54,144,211,114)(55,145,212,115)(56,146,213,116)(57,165,87,190)(58,166,88,191)(59,167,89,192)(60,168,90,193)(61,155,91,194)(62,156,92,195)(63,157,93,196)(64,158,94,183)(65,159,95,184)(66,160,96,185)(67,161,97,186)(68,162,98,187)(69,163,85,188)(70,164,86,189) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,68,99,147,174,91,131,124),(2,67,100,146,175,90,132,123),(3,66,101,145,176,89,133,122),(4,65,102,144,177,88,134,121),(5,64,103,143,178,87,135,120),(6,63,104,142,179,86,136,119),(7,62,105,141,180,85,137,118),(8,61,106,154,181,98,138,117),(9,60,107,153,182,97,139,116),(10,59,108,152,169,96,140,115),(11,58,109,151,170,95,127,114),(12,57,110,150,171,94,128,113),(13,70,111,149,172,93,129,126),(14,69,112,148,173,92,130,125),(15,189,33,223,77,157,209,45),(16,188,34,222,78,156,210,44),(17,187,35,221,79,155,197,43),(18,186,36,220,80,168,198,56),(19,185,37,219,81,167,199,55),(20,184,38,218,82,166,200,54),(21,183,39,217,83,165,201,53),(22,196,40,216,84,164,202,52),(23,195,41,215,71,163,203,51),(24,194,42,214,72,162,204,50),(25,193,29,213,73,161,205,49),(26,192,30,212,74,160,206,48),(27,191,31,211,75,159,207,47),(28,190,32,224,76,158,208,46)], [(1,197,181,42),(2,198,182,29),(3,199,169,30),(4,200,170,31),(5,201,171,32),(6,202,172,33),(7,203,173,34),(8,204,174,35),(9,205,175,36),(10,206,176,37),(11,207,177,38),(12,208,178,39),(13,209,179,40),(14,210,180,41),(15,104,84,129),(16,105,71,130),(17,106,72,131),(18,107,73,132),(19,108,74,133),(20,109,75,134),(21,110,76,135),(22,111,77,136),(23,112,78,137),(24,99,79,138),(25,100,80,139),(26,101,81,140),(27,102,82,127),(28,103,83,128),(43,147,214,117),(44,148,215,118),(45,149,216,119),(46,150,217,120),(47,151,218,121),(48,152,219,122),(49,153,220,123),(50,154,221,124),(51,141,222,125),(52,142,223,126),(53,143,224,113),(54,144,211,114),(55,145,212,115),(56,146,213,116),(57,165,87,190),(58,166,88,191),(59,167,89,192),(60,168,90,193),(61,155,91,194),(62,156,92,195),(63,157,93,196),(64,158,94,183),(65,159,95,184),(66,160,96,185),(67,161,97,186),(68,162,98,187),(69,163,85,188),(70,164,86,189)]])

C14.Q16 is a maximal subgroup of
C28⋊Q8⋊C2  Dic14.D4  (C8×Dic7)⋊C2  D4⋊(C4×D7)  D42D7⋊C4  D43D28  D4.D28  D28.D4  Dic7.1Q16  Dic7⋊Q16  C56⋊C4.C2  D7×Q8⋊C4  (Q8×D7)⋊C4  Q82D28  D144Q16  Dic7⋊SD16  Dic78SD16  Dic289C4  Dic14⋊Q8  Dic14.Q8  D14.2SD16  C88D28  C28.(C4○D4)  C8.2D28  Dic286C4  Dic142Q8  Dic14.2Q8  D14.2Q16  C83D28  D142Q16  C2.D87D7  C56⋊C2⋊C4  C4○D28⋊C4  C4⋊C4.230D14  C4⋊C4.231D14  C4⋊C4.233D14  C4.(C2×D28)  (C2×C4).47D28  D4.1D28  C4×D4.D7  C42.51D14  D4.2D28  Q8.1D28  C4×C7⋊Q16  C42.59D14  C287Q16  D2817D4  Dic1417D4  C7⋊C823D4  C7⋊C85D4  D28.37D4  Dic14.37D4  C7⋊C8.29D4  C7⋊C8.6D4  Dic14.4Q8  C42.216D14  C42.71D14  C42.82D14  Dic145Q8  C28.11Q16  Dic146Q8
C14.Q16 is a maximal quotient of
C4⋊Dic7⋊C4  C4.Dic28  Dic142C8  C28.2D8  C28.C42

44 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F7A7B7C8A8B8C8D14A···14I28A···28R
order1222444444777888814···1428···28
size111122442828222141414142···24···4

44 irreducible representations

dim1111122222222244
type+++++++-++--
imageC1C2C2C2C4D4D4D7SD16Q16D14C4×D7D28C7⋊D4D4.D7C7⋊Q16
kernelC14.Q16C2×C7⋊C8C7×C4⋊C4C2×Dic14Dic14C28C2×C14C4⋊C4C14C14C2×C4C4C4C22C2C2
# reps1111411322366633

Matrix representation of C14.Q16 in GL4(𝔽113) generated by

252500
887900
0010
0001
,
2710500
918600
000105
009951
,
1044600
67900
003010
0010283
G:=sub<GL(4,GF(113))| [25,88,0,0,25,79,0,0,0,0,1,0,0,0,0,1],[27,91,0,0,105,86,0,0,0,0,0,99,0,0,105,51],[104,67,0,0,46,9,0,0,0,0,30,102,0,0,10,83] >;

C14.Q16 in GAP, Magma, Sage, TeX

C_{14}.Q_{16}
% in TeX

G:=Group("C14.Q16");
// GroupNames label

G:=SmallGroup(224,16);
// by ID

G=gap.SmallGroup(224,16);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,121,31,579,297,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^14=b^8=1,c^2=a^7*b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^7*b^-1>;
// generators/relations

Export

Subgroup lattice of C14.Q16 in TeX

׿
×
𝔽