Copied to
clipboard

G = C14.D8order 224 = 25·7

2nd non-split extension by C14 of D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D283C4, C28.1D4, C4.9D28, C14.7D8, C14.7SD16, C4⋊C41D7, C4.1(C4×D7), C28.3(C2×C4), C71(D4⋊C4), C2.2(D4⋊D7), (C2×D28).5C2, (C2×C14).30D4, (C2×C4).35D14, C2.2(Q8⋊D7), C2.5(D14⋊C4), C14.3(C22⋊C4), (C2×C28).10C22, C22.14(C7⋊D4), (C2×C7⋊C8)⋊1C2, (C7×C4⋊C4)⋊1C2, SmallGroup(224,15)

Series: Derived Chief Lower central Upper central

C1C28 — C14.D8
C1C7C14C2×C14C2×C28C2×D28 — C14.D8
C7C14C28 — C14.D8
C1C22C2×C4C4⋊C4

Generators and relations for C14.D8
 G = < a,b,c | a14=b8=c2=1, bab-1=cac=a-1, cbc=a7b-1 >

28C2
28C2
4C4
14C22
14C22
28C22
28C22
4D7
4D7
2C2×C4
7D4
7D4
14C8
14D4
14C23
2D14
2D14
4D14
4D14
4C28
7C2×C8
7C2×D4
2C7⋊C8
2C2×C28
2C22×D7
2D28
7D4⋊C4

Smallest permutation representation of C14.D8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 63 111 78 18 96 42 44)(2 62 112 77 19 95 29 43)(3 61 99 76 20 94 30 56)(4 60 100 75 21 93 31 55)(5 59 101 74 22 92 32 54)(6 58 102 73 23 91 33 53)(7 57 103 72 24 90 34 52)(8 70 104 71 25 89 35 51)(9 69 105 84 26 88 36 50)(10 68 106 83 27 87 37 49)(11 67 107 82 28 86 38 48)(12 66 108 81 15 85 39 47)(13 65 109 80 16 98 40 46)(14 64 110 79 17 97 41 45)
(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(15 21)(16 20)(17 19)(22 28)(23 27)(24 26)(29 110)(30 109)(31 108)(32 107)(33 106)(34 105)(35 104)(36 103)(37 102)(38 101)(39 100)(40 99)(41 112)(42 111)(43 57)(44 70)(45 69)(46 68)(47 67)(48 66)(49 65)(50 64)(51 63)(52 62)(53 61)(54 60)(55 59)(56 58)(71 96)(72 95)(73 94)(74 93)(75 92)(76 91)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 98)(84 97)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,63,111,78,18,96,42,44)(2,62,112,77,19,95,29,43)(3,61,99,76,20,94,30,56)(4,60,100,75,21,93,31,55)(5,59,101,74,22,92,32,54)(6,58,102,73,23,91,33,53)(7,57,103,72,24,90,34,52)(8,70,104,71,25,89,35,51)(9,69,105,84,26,88,36,50)(10,68,106,83,27,87,37,49)(11,67,107,82,28,86,38,48)(12,66,108,81,15,85,39,47)(13,65,109,80,16,98,40,46)(14,64,110,79,17,97,41,45), (2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(15,21)(16,20)(17,19)(22,28)(23,27)(24,26)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,100)(40,99)(41,112)(42,111)(43,57)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,64)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)(71,96)(72,95)(73,94)(74,93)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,98)(84,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,63,111,78,18,96,42,44)(2,62,112,77,19,95,29,43)(3,61,99,76,20,94,30,56)(4,60,100,75,21,93,31,55)(5,59,101,74,22,92,32,54)(6,58,102,73,23,91,33,53)(7,57,103,72,24,90,34,52)(8,70,104,71,25,89,35,51)(9,69,105,84,26,88,36,50)(10,68,106,83,27,87,37,49)(11,67,107,82,28,86,38,48)(12,66,108,81,15,85,39,47)(13,65,109,80,16,98,40,46)(14,64,110,79,17,97,41,45), (2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(15,21)(16,20)(17,19)(22,28)(23,27)(24,26)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,100)(40,99)(41,112)(42,111)(43,57)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,64)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)(71,96)(72,95)(73,94)(74,93)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,98)(84,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,63,111,78,18,96,42,44),(2,62,112,77,19,95,29,43),(3,61,99,76,20,94,30,56),(4,60,100,75,21,93,31,55),(5,59,101,74,22,92,32,54),(6,58,102,73,23,91,33,53),(7,57,103,72,24,90,34,52),(8,70,104,71,25,89,35,51),(9,69,105,84,26,88,36,50),(10,68,106,83,27,87,37,49),(11,67,107,82,28,86,38,48),(12,66,108,81,15,85,39,47),(13,65,109,80,16,98,40,46),(14,64,110,79,17,97,41,45)], [(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(15,21),(16,20),(17,19),(22,28),(23,27),(24,26),(29,110),(30,109),(31,108),(32,107),(33,106),(34,105),(35,104),(36,103),(37,102),(38,101),(39,100),(40,99),(41,112),(42,111),(43,57),(44,70),(45,69),(46,68),(47,67),(48,66),(49,65),(50,64),(51,63),(52,62),(53,61),(54,60),(55,59),(56,58),(71,96),(72,95),(73,94),(74,93),(75,92),(76,91),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,98),(84,97)]])

C14.D8 is a maximal subgroup of
Dic7.SD16  Dic142D4  C4⋊C4.D14  D7×D4⋊C4  (D4×D7)⋊C4  D4⋊D28  D4.6D28  D283D4  Q8⋊C4⋊D7  Dic14.11D4  Q8⋊Dic7⋊C2  Q8⋊(C4×D7)  Q82D7⋊C4  Q8.D28  D284D4  D28.12D4  Dic78SD16  D14.4SD16  C88D28  C567D4  C4.Q8⋊D7  D569C4  D28⋊Q8  D28.Q8  Dic75D8  D14.5D8  C87D28  C2.D8⋊D7  C83D28  C56⋊C2⋊C4  D282Q8  D28.2Q8  C4○D28⋊C4  (C2×C14).40D8  C4⋊C4.228D14  C4⋊C436D14  C4.(C2×D28)  C4⋊C4.236D14  C4×D4⋊D7  C42.48D14  C287D8  D4.1D28  C4×Q8⋊D7  C42.56D14  Q8⋊D28  Q8.1D28  D2816D4  D2817D4  C7⋊C822D4  C4⋊D4⋊D7  D28.36D4  D28.37D4  C7⋊C824D4  C7⋊C86D4  D28.4Q8  C42.70D14  C42.216D14  D285Q8  D286Q8  C28.D8  C42.82D14
C14.D8 is a maximal quotient of
C14.C4≀C2  C28.47D8  D282C8  C4.D56  D568C4  C14.D16  C56.6D4  D56.C4  C56.8D4  Dic28.C4  C28.C42

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A7B7C8A8B8C8D14A···14I28A···28R
order1222224444777888814···1428···28
size111128282244222141414142···24···4

44 irreducible representations

dim1111122222222244
type++++++++++++
imageC1C2C2C2C4D4D4D7D8SD16D14C4×D7D28C7⋊D4D4⋊D7Q8⋊D7
kernelC14.D8C2×C7⋊C8C7×C4⋊C4C2×D28D28C28C2×C14C4⋊C4C14C14C2×C4C4C4C22C2C2
# reps1111411322366633

Matrix representation of C14.D8 in GL4(𝔽113) generated by

252500
887900
001120
000112
,
1044600
13900
0087106
00160
,
1000
7911200
0010
0077112
G:=sub<GL(4,GF(113))| [25,88,0,0,25,79,0,0,0,0,112,0,0,0,0,112],[104,13,0,0,46,9,0,0,0,0,87,16,0,0,106,0],[1,79,0,0,0,112,0,0,0,0,1,77,0,0,0,112] >;

C14.D8 in GAP, Magma, Sage, TeX

C_{14}.D_8
% in TeX

G:=Group("C14.D8");
// GroupNames label

G:=SmallGroup(224,15);
// by ID

G=gap.SmallGroup(224,15);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,121,31,579,297,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^14=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=a^7*b^-1>;
// generators/relations

Export

Subgroup lattice of C14.D8 in TeX

׿
×
𝔽