metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.2D4, C6.4Q16, Dic6⋊3C4, C4.10D12, C6.5SD16, C4⋊C4.3S3, C4.2(C4×S3), C12.4(C2×C4), (C2×C4).36D6, (C2×C6).31D4, C2.6(D6⋊C4), C3⋊1(Q8⋊C4), C6.4(C22⋊C4), C2.2(D4.S3), (C2×Dic6).5C2, C2.2(C3⋊Q16), (C2×C12).11C22, C22.15(C3⋊D4), (C2×C3⋊C8).3C2, (C3×C4⋊C4).3C2, SmallGroup(96,17)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — C4⋊C4 |
Generators and relations for C6.SD16
G = < a,b,c | a6=b8=1, c2=a3b4, bab-1=a-1, ac=ca, cbc-1=a3b-1 >
Character table of C6.SD16
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | 1 | -1 | -1 | -1 | 1 | -i | i | -i | i | -1 | i | i | 1 | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -1 | i | i | 1 | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -1 | -i | -i | 1 | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | 1 | -1 | -1 | -1 | 1 | i | -i | i | -i | -1 | -i | -i | 1 | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | √3 | -√3 | 1 | -√3 | √3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | -√3 | √3 | 1 | √3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | -2i | 2i | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | i | i | -1 | -i | -i | complex lifted from C4×S3 |
ρ18 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 2i | -2i | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -i | -i | -1 | i | i | complex lifted from C4×S3 |
ρ21 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
(1 75 93 23 27 61)(2 62 28 24 94 76)(3 77 95 17 29 63)(4 64 30 18 96 78)(5 79 89 19 31 57)(6 58 32 20 90 80)(7 73 91 21 25 59)(8 60 26 22 92 74)(9 48 34 55 67 83)(10 84 68 56 35 41)(11 42 36 49 69 85)(12 86 70 50 37 43)(13 44 38 51 71 87)(14 88 72 52 39 45)(15 46 40 53 65 81)(16 82 66 54 33 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 55 19 13)(2 16 20 50)(3 53 21 11)(4 14 22 56)(5 51 23 9)(6 12 24 54)(7 49 17 15)(8 10 18 52)(25 42 77 65)(26 68 78 45)(27 48 79 71)(28 66 80 43)(29 46 73 69)(30 72 74 41)(31 44 75 67)(32 70 76 47)(33 58 86 94)(34 89 87 61)(35 64 88 92)(36 95 81 59)(37 62 82 90)(38 93 83 57)(39 60 84 96)(40 91 85 63)
G:=sub<Sym(96)| (1,75,93,23,27,61)(2,62,28,24,94,76)(3,77,95,17,29,63)(4,64,30,18,96,78)(5,79,89,19,31,57)(6,58,32,20,90,80)(7,73,91,21,25,59)(8,60,26,22,92,74)(9,48,34,55,67,83)(10,84,68,56,35,41)(11,42,36,49,69,85)(12,86,70,50,37,43)(13,44,38,51,71,87)(14,88,72,52,39,45)(15,46,40,53,65,81)(16,82,66,54,33,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,55,19,13)(2,16,20,50)(3,53,21,11)(4,14,22,56)(5,51,23,9)(6,12,24,54)(7,49,17,15)(8,10,18,52)(25,42,77,65)(26,68,78,45)(27,48,79,71)(28,66,80,43)(29,46,73,69)(30,72,74,41)(31,44,75,67)(32,70,76,47)(33,58,86,94)(34,89,87,61)(35,64,88,92)(36,95,81,59)(37,62,82,90)(38,93,83,57)(39,60,84,96)(40,91,85,63)>;
G:=Group( (1,75,93,23,27,61)(2,62,28,24,94,76)(3,77,95,17,29,63)(4,64,30,18,96,78)(5,79,89,19,31,57)(6,58,32,20,90,80)(7,73,91,21,25,59)(8,60,26,22,92,74)(9,48,34,55,67,83)(10,84,68,56,35,41)(11,42,36,49,69,85)(12,86,70,50,37,43)(13,44,38,51,71,87)(14,88,72,52,39,45)(15,46,40,53,65,81)(16,82,66,54,33,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,55,19,13)(2,16,20,50)(3,53,21,11)(4,14,22,56)(5,51,23,9)(6,12,24,54)(7,49,17,15)(8,10,18,52)(25,42,77,65)(26,68,78,45)(27,48,79,71)(28,66,80,43)(29,46,73,69)(30,72,74,41)(31,44,75,67)(32,70,76,47)(33,58,86,94)(34,89,87,61)(35,64,88,92)(36,95,81,59)(37,62,82,90)(38,93,83,57)(39,60,84,96)(40,91,85,63) );
G=PermutationGroup([[(1,75,93,23,27,61),(2,62,28,24,94,76),(3,77,95,17,29,63),(4,64,30,18,96,78),(5,79,89,19,31,57),(6,58,32,20,90,80),(7,73,91,21,25,59),(8,60,26,22,92,74),(9,48,34,55,67,83),(10,84,68,56,35,41),(11,42,36,49,69,85),(12,86,70,50,37,43),(13,44,38,51,71,87),(14,88,72,52,39,45),(15,46,40,53,65,81),(16,82,66,54,33,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,55,19,13),(2,16,20,50),(3,53,21,11),(4,14,22,56),(5,51,23,9),(6,12,24,54),(7,49,17,15),(8,10,18,52),(25,42,77,65),(26,68,78,45),(27,48,79,71),(28,66,80,43),(29,46,73,69),(30,72,74,41),(31,44,75,67),(32,70,76,47),(33,58,86,94),(34,89,87,61),(35,64,88,92),(36,95,81,59),(37,62,82,90),(38,93,83,57),(39,60,84,96),(40,91,85,63)]])
C6.SD16 is a maximal subgroup of
C12⋊Q8⋊C2 Dic6.D4 (C2×C8).200D6 D4⋊(C4×S3) D4⋊2S3⋊C4 D4⋊3D12 D4.D12 D12.D4 Dic3.1Q16 Dic3⋊Q16 (C2×Q8).36D6 S3×Q8⋊C4 (S3×Q8)⋊C4 Q8⋊3D12 D6⋊Q16 Dic3⋊SD16 Dic3⋊8SD16 Dic12⋊9C4 Dic6⋊Q8 Dic6.Q8 D6.2SD16 C8⋊8D12 C8.2D12 C6.(C4○D8) Dic3⋊5Q16 Dic3.Q16 Dic6.2Q8 D6.2Q16 C8⋊3D12 D6⋊2Q16 C2.D8⋊7S3 C24⋊C2⋊C4 C4○D12⋊C4 C4⋊C4.230D6 C4⋊C4.231D6 C4⋊C4.233D6 C4.(C2×D12) C4⋊C4.237D6 D4.1D12 C4×D4.S3 C42.51D6 D4.2D12 Q8.6D12 C4×C3⋊Q16 C42.59D6 C12⋊7Q16 D12⋊17D4 Dic6⋊17D4 C3⋊C8⋊23D4 C3⋊C8⋊5D4 D12.37D4 Dic6.37D4 C3⋊C8.29D4 C3⋊C8.6D4 Dic6.4Q8 C42.216D6 C42.71D6 C42.82D6 Dic6⋊5Q8 C12.Q16 Dic6⋊6Q8 C18.Q16 Dic6⋊Dic3 C12.73D12 C62.114D4 Dic6⋊Dic5 Dic30⋊12C4 Dic30⋊9C4 Dic6⋊F5
C6.SD16 is a maximal quotient of
C4⋊Dic3⋊C4 C4.Dic12 Dic6⋊2C8 C12.2D8 C12.C42 C18.Q16 Dic6⋊Dic3 C12.73D12 C62.114D4 Dic6⋊Dic5 Dic30⋊12C4 Dic30⋊9C4 Dic6⋊F5
Matrix representation of C6.SD16 ►in GL5(𝔽73)
72 | 0 | 0 | 0 | 0 |
0 | 72 | 72 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
27 | 0 | 0 | 0 | 0 |
0 | 54 | 68 | 0 | 0 |
0 | 14 | 19 | 0 | 0 |
0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 55 | 12 |
27 | 0 | 0 | 0 | 0 |
0 | 30 | 60 | 0 | 0 |
0 | 13 | 43 | 0 | 0 |
0 | 0 | 0 | 11 | 66 |
0 | 0 | 0 | 38 | 62 |
G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,1,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,72],[27,0,0,0,0,0,54,14,0,0,0,68,19,0,0,0,0,0,0,55,0,0,0,4,12],[27,0,0,0,0,0,30,13,0,0,0,60,43,0,0,0,0,0,11,38,0,0,0,66,62] >;
C6.SD16 in GAP, Magma, Sage, TeX
C_6.{\rm SD}_{16}
% in TeX
G:=Group("C6.SD16");
// GroupNames label
G:=SmallGroup(96,17);
// by ID
G=gap.SmallGroup(96,17);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,121,31,579,297,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^6=b^8=1,c^2=a^3*b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b^-1>;
// generators/relations
Export
Subgroup lattice of C6.SD16 in TeX
Character table of C6.SD16 in TeX