Copied to
clipboard

G = C4.SD16order 64 = 26

4th non-split extension by C4 of SD16 acting via SD16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4.3Q16, C4.4SD16, C42.77C22, (C4×C8).4C2, C4⋊Q8.7C2, (C2×C4).75D4, C2.9(C2×Q16), C4.14(C4○D4), C4⋊C4.17C22, (C2×C8).67C22, Q8⋊C4.1C2, C2.15(C2×SD16), (C2×C4).112C23, C22.108(C2×D4), (C2×Q8).20C22, C2.10(C4.4D4), SmallGroup(64,168)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C4.SD16
C1C2C4C2×C4C2×C8C4×C8 — C4.SD16
C1C2C2×C4 — C4.SD16
C1C22C42 — C4.SD16
C1C2C2C2×C4 — C4.SD16

Generators and relations for C4.SD16
 G = < a,b,c | a4=b8=1, c2=a2, ab=ba, cac-1=a-1, cbc-1=a2b3 >

4C4
4C4
4C4
4C4
2C2×C4
2C2×C4
2C2×C4
2C8
2Q8
2Q8
2C8
2Q8
2C2×C4
2Q8
4Q8
4Q8
2C4⋊C4
2C2×Q8
2C4⋊C4
2C4⋊C4

Character table of C4.SD16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H
 size 1111222222888822222222
ρ11111111111111111111111    trivial
ρ21111-1-11-11-11-11-1-1-11-11-111    linear of order 2
ρ31111111111-111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ41111-1-11-11-1-1-11111-11-11-1-1    linear of order 2
ρ511111111111-1-11-1-1-1-1-1-1-1-1    linear of order 2
ρ61111-1-11-11-111-1-111-11-11-1-1    linear of order 2
ρ71111111111-1-1-1-111111111    linear of order 2
ρ81111-1-11-11-1-11-11-1-11-11-111    linear of order 2
ρ92222-2-2-22-22000000000000    orthogonal lifted from D4
ρ10222222-2-2-2-2000000000000    orthogonal lifted from D4
ρ1122-2-200020-20000-22-222-22-2    symplectic lifted from Q16, Schur index 2
ρ1222-2-2000-2020000-2222-2-2-22    symplectic lifted from Q16, Schur index 2
ρ1322-2-200020-200002-22-2-22-22    symplectic lifted from Q16, Schur index 2
ρ1422-2-2000-20200002-2-2-2222-2    symplectic lifted from Q16, Schur index 2
ρ152-22-200-20200000002i02i0-2i-2i    complex lifted from C4○D4
ρ162-22-20020-200000-2i-2i02i02i00    complex lifted from C4○D4
ρ172-22-20020-2000002i2i0-2i0-2i00    complex lifted from C4○D4
ρ182-22-200-2020000000-2i0-2i02i2i    complex lifted from C4○D4
ρ192-2-222-200000000--2-2-2--2--2-2-2--2    complex lifted from SD16
ρ202-2-222-200000000-2--2--2-2-2--2--2-2    complex lifted from SD16
ρ212-2-22-2200000000--2-2--2--2-2-2--2-2    complex lifted from SD16
ρ222-2-22-2200000000-2--2-2-2--2--2-2--2    complex lifted from SD16

Smallest permutation representation of C4.SD16
Regular action on 64 points
Generators in S64
(1 38 29 15)(2 39 30 16)(3 40 31 9)(4 33 32 10)(5 34 25 11)(6 35 26 12)(7 36 27 13)(8 37 28 14)(17 53 41 57)(18 54 42 58)(19 55 43 59)(20 56 44 60)(21 49 45 61)(22 50 46 62)(23 51 47 63)(24 52 48 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 54 29 58)(2 61 30 49)(3 52 31 64)(4 59 32 55)(5 50 25 62)(6 57 26 53)(7 56 27 60)(8 63 28 51)(9 48 40 24)(10 19 33 43)(11 46 34 22)(12 17 35 41)(13 44 36 20)(14 23 37 47)(15 42 38 18)(16 21 39 45)

G:=sub<Sym(64)| (1,38,29,15)(2,39,30,16)(3,40,31,9)(4,33,32,10)(5,34,25,11)(6,35,26,12)(7,36,27,13)(8,37,28,14)(17,53,41,57)(18,54,42,58)(19,55,43,59)(20,56,44,60)(21,49,45,61)(22,50,46,62)(23,51,47,63)(24,52,48,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,54,29,58)(2,61,30,49)(3,52,31,64)(4,59,32,55)(5,50,25,62)(6,57,26,53)(7,56,27,60)(8,63,28,51)(9,48,40,24)(10,19,33,43)(11,46,34,22)(12,17,35,41)(13,44,36,20)(14,23,37,47)(15,42,38,18)(16,21,39,45)>;

G:=Group( (1,38,29,15)(2,39,30,16)(3,40,31,9)(4,33,32,10)(5,34,25,11)(6,35,26,12)(7,36,27,13)(8,37,28,14)(17,53,41,57)(18,54,42,58)(19,55,43,59)(20,56,44,60)(21,49,45,61)(22,50,46,62)(23,51,47,63)(24,52,48,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,54,29,58)(2,61,30,49)(3,52,31,64)(4,59,32,55)(5,50,25,62)(6,57,26,53)(7,56,27,60)(8,63,28,51)(9,48,40,24)(10,19,33,43)(11,46,34,22)(12,17,35,41)(13,44,36,20)(14,23,37,47)(15,42,38,18)(16,21,39,45) );

G=PermutationGroup([[(1,38,29,15),(2,39,30,16),(3,40,31,9),(4,33,32,10),(5,34,25,11),(6,35,26,12),(7,36,27,13),(8,37,28,14),(17,53,41,57),(18,54,42,58),(19,55,43,59),(20,56,44,60),(21,49,45,61),(22,50,46,62),(23,51,47,63),(24,52,48,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,54,29,58),(2,61,30,49),(3,52,31,64),(4,59,32,55),(5,50,25,62),(6,57,26,53),(7,56,27,60),(8,63,28,51),(9,48,40,24),(10,19,33,43),(11,46,34,22),(12,17,35,41),(13,44,36,20),(14,23,37,47),(15,42,38,18),(16,21,39,45)]])

C4.SD16 is a maximal subgroup of
C85Q16  C8212C2  C823C2  C85SD16  C8.9SD16  C42.664C23  C42.665C23  C42.666C23  C42.667C23  C83Q16  C42.355D4  C42.241D4  C42.243D4  C42.365D4  C42.367D4  C42.259D4  C42.262D4  C42.264D4  C42.265D4  C42.267D4  C42.268D4  C42.281D4  C42.282D4  C42.283D4
 C4p.Q16: C8.7Q16  C12.14Q16  C12.9Q16  C12.Q16  C20.14Q16  C20.Q16  C20.11Q16  C28.14Q16 ...
 C4⋊C4.D2p: D4.SD16  Q8.Q16  D4.3Q16  C42.199C23  D4.5SD16  D43Q16  Q83Q16  C42.207C23 ...
C4.SD16 is a maximal quotient of
C42.55Q8  C2.(C88D4)  (C2×C4).19Q16  (C2×C4).23Q16
 C42.D2p: C42.431D4  C42.436D4  C12.14Q16  C12.9Q16  C12.Q16  C20.14Q16  C20.Q16  C20.11Q16 ...
 C4⋊C4.D2p: (C2×Q8)⋊Q8  C4⋊C4.95D4  Dic3.1Q16  Dic5.3Q16  Dic7.1Q16 ...

Matrix representation of C4.SD16 in GL4(𝔽17) generated by

01600
1000
0010
0001
,
31400
3300
0055
00125
,
7100
11000
00016
00160
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,1,0,0,0,0,1],[3,3,0,0,14,3,0,0,0,0,5,12,0,0,5,5],[7,1,0,0,1,10,0,0,0,0,0,16,0,0,16,0] >;

C4.SD16 in GAP, Magma, Sage, TeX

C_4.{\rm SD}_{16}
% in TeX

G:=Group("C4.SD16");
// GroupNames label

G:=SmallGroup(64,168);
// by ID

G=gap.SmallGroup(64,168);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,103,362,50,963,117,1444,88]);
// Polycyclic

G:=Group<a,b,c|a^4=b^8=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^2*b^3>;
// generators/relations

Export

Subgroup lattice of C4.SD16 in TeX
Character table of C4.SD16 in TeX

׿
×
𝔽