p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.3Q16, C4.4SD16, C42.77C22, (C4×C8).4C2, C4⋊Q8.7C2, (C2×C4).75D4, C2.9(C2×Q16), C4.14(C4○D4), C4⋊C4.17C22, (C2×C8).67C22, Q8⋊C4.1C2, C2.15(C2×SD16), (C2×C4).112C23, C22.108(C2×D4), (C2×Q8).20C22, C2.10(C4.4D4), SmallGroup(64,168)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.SD16
G = < a,b,c | a4=b8=1, c2=a2, ab=ba, cac-1=a-1, cbc-1=a2b3 >
Character table of C4.SD16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 2i | 0 | -2i | -2i | complex lifted from C4○D4 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 0 | 2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 0 | -2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | -2i | 0 | 2i | 2i | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
(1 38 29 15)(2 39 30 16)(3 40 31 9)(4 33 32 10)(5 34 25 11)(6 35 26 12)(7 36 27 13)(8 37 28 14)(17 53 41 57)(18 54 42 58)(19 55 43 59)(20 56 44 60)(21 49 45 61)(22 50 46 62)(23 51 47 63)(24 52 48 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 54 29 58)(2 61 30 49)(3 52 31 64)(4 59 32 55)(5 50 25 62)(6 57 26 53)(7 56 27 60)(8 63 28 51)(9 48 40 24)(10 19 33 43)(11 46 34 22)(12 17 35 41)(13 44 36 20)(14 23 37 47)(15 42 38 18)(16 21 39 45)
G:=sub<Sym(64)| (1,38,29,15)(2,39,30,16)(3,40,31,9)(4,33,32,10)(5,34,25,11)(6,35,26,12)(7,36,27,13)(8,37,28,14)(17,53,41,57)(18,54,42,58)(19,55,43,59)(20,56,44,60)(21,49,45,61)(22,50,46,62)(23,51,47,63)(24,52,48,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,54,29,58)(2,61,30,49)(3,52,31,64)(4,59,32,55)(5,50,25,62)(6,57,26,53)(7,56,27,60)(8,63,28,51)(9,48,40,24)(10,19,33,43)(11,46,34,22)(12,17,35,41)(13,44,36,20)(14,23,37,47)(15,42,38,18)(16,21,39,45)>;
G:=Group( (1,38,29,15)(2,39,30,16)(3,40,31,9)(4,33,32,10)(5,34,25,11)(6,35,26,12)(7,36,27,13)(8,37,28,14)(17,53,41,57)(18,54,42,58)(19,55,43,59)(20,56,44,60)(21,49,45,61)(22,50,46,62)(23,51,47,63)(24,52,48,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,54,29,58)(2,61,30,49)(3,52,31,64)(4,59,32,55)(5,50,25,62)(6,57,26,53)(7,56,27,60)(8,63,28,51)(9,48,40,24)(10,19,33,43)(11,46,34,22)(12,17,35,41)(13,44,36,20)(14,23,37,47)(15,42,38,18)(16,21,39,45) );
G=PermutationGroup([[(1,38,29,15),(2,39,30,16),(3,40,31,9),(4,33,32,10),(5,34,25,11),(6,35,26,12),(7,36,27,13),(8,37,28,14),(17,53,41,57),(18,54,42,58),(19,55,43,59),(20,56,44,60),(21,49,45,61),(22,50,46,62),(23,51,47,63),(24,52,48,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,54,29,58),(2,61,30,49),(3,52,31,64),(4,59,32,55),(5,50,25,62),(6,57,26,53),(7,56,27,60),(8,63,28,51),(9,48,40,24),(10,19,33,43),(11,46,34,22),(12,17,35,41),(13,44,36,20),(14,23,37,47),(15,42,38,18),(16,21,39,45)]])
C4.SD16 is a maximal subgroup of
C8⋊5Q16 C82⋊12C2 C82⋊3C2 C8⋊5SD16 C8.9SD16 C42.664C23 C42.665C23 C42.666C23 C42.667C23 C8⋊3Q16 C42.355D4 C42.241D4 C42.243D4 C42.365D4 C42.367D4 C42.259D4 C42.262D4 C42.264D4 C42.265D4 C42.267D4 C42.268D4 C42.281D4 C42.282D4 C42.283D4
C4p.Q16: C8.7Q16 C12.14Q16 C12.9Q16 C12.Q16 C20.14Q16 C20.Q16 C20.11Q16 C28.14Q16 ...
C4⋊C4.D2p: D4.SD16 Q8.Q16 D4.3Q16 C42.199C23 D4.5SD16 D4⋊3Q16 Q8⋊3Q16 C42.207C23 ...
C4.SD16 is a maximal quotient of
C42.55Q8 C2.(C8⋊8D4) (C2×C4).19Q16 (C2×C4).23Q16
C42.D2p: C42.431D4 C42.436D4 C12.14Q16 C12.9Q16 C12.Q16 C20.14Q16 C20.Q16 C20.11Q16 ...
C4⋊C4.D2p: (C2×Q8)⋊Q8 C4⋊C4.95D4 Dic3.1Q16 Dic5.3Q16 Dic7.1Q16 ...
Matrix representation of C4.SD16 ►in GL4(𝔽17) generated by
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 5 | 5 |
0 | 0 | 12 | 5 |
7 | 1 | 0 | 0 |
1 | 10 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,1,0,0,0,0,1],[3,3,0,0,14,3,0,0,0,0,5,12,0,0,5,5],[7,1,0,0,1,10,0,0,0,0,0,16,0,0,16,0] >;
C4.SD16 in GAP, Magma, Sage, TeX
C_4.{\rm SD}_{16}
% in TeX
G:=Group("C4.SD16");
// GroupNames label
G:=SmallGroup(64,168);
// by ID
G=gap.SmallGroup(64,168);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,103,362,50,963,117,1444,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^2*b^3>;
// generators/relations
Export
Subgroup lattice of C4.SD16 in TeX
Character table of C4.SD16 in TeX