p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.2D4, C42.20C22, C4⋊C8⋊5C2, (C4×D4)⋊4C2, (C2×D8).2C2, (C2×C4).28D4, C4.33(C2×D4), Q8⋊C4⋊6C2, C2.8(C4○D8), C4.4D4⋊3C2, D4⋊C4⋊11C2, (C2×SD16)⋊12C2, C4.43(C4○D4), C4⋊C4.60C22, (C2×C4).91C23, (C2×C8).31C22, C22.87(C2×D4), (C2×Q8).9C22, C2.15(C4⋊D4), C2.11(C8⋊C22), (C2×D4).13C22, SmallGroup(64,144)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.2D4
G = < a,b,c,d | a4=b2=c4=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c-1 >
Subgroups: 125 in 62 conjugacy classes, 27 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, D4⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4.4D4, C2×D8, C2×SD16, D4.2D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8⋊C22, D4.2D4
Character table of D4.2D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | √2 | -√2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | -√2 | √2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | √2 | -√2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -√2 | √2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 12)(2 11)(3 10)(4 9)(5 14)(6 13)(7 16)(8 15)(17 26)(18 25)(19 28)(20 27)(21 30)(22 29)(23 32)(24 31)
(1 21 5 19)(2 22 6 20)(3 23 7 17)(4 24 8 18)(9 31 15 25)(10 32 16 26)(11 29 13 27)(12 30 14 28)
(1 17 3 19)(2 20 4 18)(5 23 7 21)(6 22 8 24)(9 28 11 26)(10 27 12 25)(13 32 15 30)(14 31 16 29)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,12)(2,11)(3,10)(4,9)(5,14)(6,13)(7,16)(8,15)(17,26)(18,25)(19,28)(20,27)(21,30)(22,29)(23,32)(24,31), (1,21,5,19)(2,22,6,20)(3,23,7,17)(4,24,8,18)(9,31,15,25)(10,32,16,26)(11,29,13,27)(12,30,14,28), (1,17,3,19)(2,20,4,18)(5,23,7,21)(6,22,8,24)(9,28,11,26)(10,27,12,25)(13,32,15,30)(14,31,16,29)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,12)(2,11)(3,10)(4,9)(5,14)(6,13)(7,16)(8,15)(17,26)(18,25)(19,28)(20,27)(21,30)(22,29)(23,32)(24,31), (1,21,5,19)(2,22,6,20)(3,23,7,17)(4,24,8,18)(9,31,15,25)(10,32,16,26)(11,29,13,27)(12,30,14,28), (1,17,3,19)(2,20,4,18)(5,23,7,21)(6,22,8,24)(9,28,11,26)(10,27,12,25)(13,32,15,30)(14,31,16,29) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,12),(2,11),(3,10),(4,9),(5,14),(6,13),(7,16),(8,15),(17,26),(18,25),(19,28),(20,27),(21,30),(22,29),(23,32),(24,31)], [(1,21,5,19),(2,22,6,20),(3,23,7,17),(4,24,8,18),(9,31,15,25),(10,32,16,26),(11,29,13,27),(12,30,14,28)], [(1,17,3,19),(2,20,4,18),(5,23,7,21),(6,22,8,24),(9,28,11,26),(10,27,12,25),(13,32,15,30),(14,31,16,29)]])
D4.2D4 is a maximal subgroup of
C42.D2p: C42.443D4 C42.211D4 C42.446D4 C42.384D4 C42.225D4 C42.229D4 C42.232D4 C42.265D4 ...
(Cp×D4).D4: C42.15C23 D8⋊9D4 SD16⋊D4 D8⋊10D4 SD16⋊8D4 D8⋊5D4 SD16⋊2D4 D8⋊12D4 ...
C4⋊C4.D2p: C42.14C23 C42.18C23 C42.19C23 C42.352C23 C42.358C23 C42.359C23 C42.406C23 C42.407C23 ...
D4.2D4 is a maximal quotient of
C4.67(C4×D4) C2.(C4×Q16) C42.31Q8 (C2×C8).24Q8
D4.D4p: D4.2D8 D4.1D12 D4.1D20 D4.1D28 ...
(Cp×D4).D4: D4.2SD16 D4.3SD16 D4.Q16 C42.248C23 C42.250C23 C42.252C23 C42.254C23 C42.100D4 ...
C42.D2p: C42.119D4 D12.19D4 D12.23D4 D20.19D4 D20.23D4 D28.19D4 D28.23D4 ...
(C2×C8).D2p: C4⋊C4.106D4 (C2×C8).52D4 D12.D4 D12.12D4 D20.D4 D20.12D4 D28.D4 D28.12D4 ...
Matrix representation of D4.2D4 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
14 | 3 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
13 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[14,3,0,0,3,3,0,0,0,0,16,0,0,0,0,16],[13,0,0,0,0,13,0,0,0,0,0,16,0,0,1,0],[13,0,0,0,0,4,0,0,0,0,0,1,0,0,1,0] >;
D4.2D4 in GAP, Magma, Sage, TeX
D_4._2D_4
% in TeX
G:=Group("D4.2D4");
// GroupNames label
G:=SmallGroup(64,144);
// by ID
G=gap.SmallGroup(64,144);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,247,362,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export