p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8○D8, C8○Q16, D8⋊5C4, C8○SD16, Q16⋊5C4, C8.30D4, SD16⋊3C4, C42.74C22, M4(2).11C22, C8○C4≀C2, C4≀C2⋊7C2, (C4×C8)⋊10C2, C8○(C4○D8), C8○D4⋊6C2, C8.11(C2×C4), C4○D8.5C2, D4.3(C2×C4), C2.18(C4×D4), C4.79(C2×D4), Q8.3(C2×C4), C8○(C8.C4), C8.C4⋊8C2, C4.15(C22×C4), (C2×C4).79C23, C4○D4.7C22, (C2×C8).102C22, C22.1(C4○D4), 2-Sylow(CU(2,3)), SmallGroup(64,124)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8○D8
G = < a,b,c | a8=c2=1, b4=a4, ab=ba, ac=ca, cbc=a4b3 >
Character table of C8○D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | i | 1 | -i | i | 1 | 1 | i | -i | -i | i | -1 | -1 | -i | 1 | i | 1 | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | i | 1 | -i | i | 1 | -1 | -i | i | i | -i | 1 | 1 | i | -1 | -i | -1 | -i | i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | i | 1 | -i | i | -1 | 1 | -i | i | i | -i | 1 | 1 | i | -1 | -i | -1 | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | i | 1 | -i | i | -1 | -1 | i | -i | -i | i | -1 | -1 | -i | 1 | i | 1 | -i | -i | i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | i | -i | 1 | i | -i | -1 | -1 | -i | i | i | -i | -1 | -1 | i | 1 | -i | 1 | i | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | i | -i | 1 | i | -i | -1 | 1 | i | -i | -i | i | 1 | 1 | -i | -1 | i | -1 | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -i | 1 | i | -i | 1 | -1 | i | -i | -i | i | 1 | 1 | -i | -1 | i | -1 | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | i | -i | 1 | i | -i | 1 | 1 | -i | i | i | -i | -1 | -1 | i | 1 | -i | 1 | -i | -i | i | i | linear of order 4 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | -1-i | 1-i | 0 | 1+i | -1+i | 0 | 0 | 2ζ83 | 2ζ85 | 2ζ8 | 2ζ87 | √-2 | -√-2 | 0 | -√2 | 0 | √2 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 1+i | -1+i | 0 | -1-i | 1-i | 0 | 0 | 2ζ87 | 2ζ8 | 2ζ85 | 2ζ83 | √-2 | -√-2 | 0 | -√2 | 0 | √2 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | -1+i | 1+i | 0 | 1-i | -1-i | 0 | 0 | 2ζ85 | 2ζ83 | 2ζ87 | 2ζ8 | -√-2 | √-2 | 0 | -√2 | 0 | √2 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 1-i | -1-i | 0 | -1+i | 1+i | 0 | 0 | 2ζ85 | 2ζ83 | 2ζ87 | 2ζ8 | √-2 | -√-2 | 0 | √2 | 0 | -√2 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 1-i | -1-i | 0 | -1+i | 1+i | 0 | 0 | 2ζ8 | 2ζ87 | 2ζ83 | 2ζ85 | -√-2 | √-2 | 0 | -√2 | 0 | √2 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | -1+i | 1+i | 0 | 1-i | -1-i | 0 | 0 | 2ζ8 | 2ζ87 | 2ζ83 | 2ζ85 | √-2 | -√-2 | 0 | √2 | 0 | -√2 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 1+i | -1+i | 0 | -1-i | 1-i | 0 | 0 | 2ζ83 | 2ζ85 | 2ζ8 | 2ζ87 | -√-2 | √-2 | 0 | √2 | 0 | -√2 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | -1-i | 1-i | 0 | 1+i | -1+i | 0 | 0 | 2ζ87 | 2ζ8 | 2ζ85 | 2ζ83 | -√-2 | √-2 | 0 | √2 | 0 | -√2 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 6 3 8 5 2 7 4)(9 12 15 10 13 16 11 14)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,6,3,8,5,2,7,4)(9,12,15,10,13,16,11,14), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,6,3,8,5,2,7,4)(9,12,15,10,13,16,11,14), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,6,3,8,5,2,7,4),(9,12,15,10,13,16,11,14)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14)]])
G:=TransitiveGroup(16,114);
C8○D8 is a maximal subgroup of
C42.283C23 M4(2).51D4 D8○SD16 D8⋊6D4 D8○D8 D8○Q16 CU2(𝔽3) SD16⋊3F5
D8p⋊C4: C8○D16 D16⋊5C4 D24⋊11C4 D24⋊7C4 D40⋊17C4 D40⋊13C4 Q16⋊5F5 D56⋊11C4 ...
C42.D2p: C8≀C2 C8.32D8 C8.3D8 D8⋊3D4 C8.5D8 D8⋊3Q8 D8.2Q8 C42.196D6 ...
C8p.D4: C16○D8 D8.C8 C24.100D4 C40.93D4 C56.93D4 ...
(Cp×D8)⋊C4: M4(2)○D8 D8⋊5Dic3 D8⋊5Dic5 D8⋊5F5 D8⋊5Dic7 ...
C8○D8 is a maximal quotient of
C8×D8 C8×SD16 C8×Q16 D4.M4(2) D4⋊2M4(2) Q8.M4(2) Q8⋊2M4(2) C8⋊6D8 C8⋊9SD16 C8⋊6Q16 M4(2).3Q8 C42.62Q8
C42.D2p: C42.428D4 C42.326D4 D24⋊11C4 C42.196D6 D40⋊17C4 C42.196D10 D56⋊11C4 C42.196D14 ...
M4(2).D2p: M4(2).42D4 M4(2).43D4 M4(2).24D4 D24⋊7C4 C24.100D4 D40⋊13C4 C40.93D4 D56⋊7C4 ...
C2p.(C4×D4): Q8.C42 C8.14C42 D8⋊5Dic3 D8⋊5Dic5 D8⋊5F5 SD16⋊3F5 Q16⋊5F5 D8⋊5Dic7 ...
Matrix representation of C8○D8 ►in GL2(𝔽17) generated by
2 | 0 |
0 | 2 |
2 | 0 |
0 | 9 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(17))| [2,0,0,2],[2,0,0,9],[0,1,1,0] >;
C8○D8 in GAP, Magma, Sage, TeX
C_8\circ D_8
% in TeX
G:=Group("C8oD8");
// GroupNames label
G:=SmallGroup(64,124);
// by ID
G=gap.SmallGroup(64,124);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,86,963,489,117,88]);
// Polycyclic
G:=Group<a,b,c|a^8=c^2=1,b^4=a^4,a*b=b*a,a*c=c*a,c*b*c=a^4*b^3>;
// generators/relations
Export
Subgroup lattice of C8○D8 in TeX
Character table of C8○D8 in TeX