p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.114D4, M4(2).28D4, C22.59(C4×D4), C4.18(C4⋊1D4), C4⋊1(C4.10D4), C4.79(C4⋊D4), C4.64(C4.4D4), (C4×M4(2)).25C2, C4⋊M4(2).32C2, (C2×C42).320C22, (C22×C4).700C23, C23.198(C22×C4), (C22×Q8).36C22, (C2×M4(2)).209C22, C2.18(C24.3C22), (C2×C4⋊C4).24C4, (C2×C4⋊Q8).11C2, (C2×C4).65(C4○D4), (C2×C4).1352(C2×D4), (C22×C4).24(C2×C4), (C2×C4.10D4).9C2, C2.26(C2×C4.10D4), (C2×C4).258(C22⋊C4), C22.288(C2×C22⋊C4), SmallGroup(128,698)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.114D4
G = < a,b,c,d | a4=b4=1, c4=d2=b2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=b-1c3 >
Subgroups: 260 in 146 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×6], C4 [×6], C22, C22 [×2], C22 [×2], C8 [×6], C2×C4 [×2], C2×C4 [×8], C2×C4 [×16], Q8 [×8], C23, C42 [×2], C42 [×2], C4⋊C4 [×8], C2×C8 [×4], M4(2) [×4], M4(2) [×6], C22×C4, C22×C4 [×6], C2×Q8 [×12], C4×C8, C8⋊C4, C4.10D4 [×8], C4⋊C8 [×2], C2×C42, C2×C4⋊C4 [×4], C4⋊Q8 [×4], C2×M4(2) [×4], C22×Q8 [×2], C4×M4(2), C2×C4.10D4 [×4], C4⋊M4(2), C2×C4⋊Q8, C42.114D4
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C4○D4 [×2], C4.10D4 [×4], C2×C22⋊C4, C4×D4 [×2], C4⋊D4 [×2], C4.4D4, C4⋊1D4, C24.3C22, C2×C4.10D4 [×2], C42.114D4
(1 11 27 39)(2 12 28 40)(3 13 29 33)(4 14 30 34)(5 15 31 35)(6 16 32 36)(7 9 25 37)(8 10 26 38)(17 49 45 58)(18 50 46 59)(19 51 47 60)(20 52 48 61)(21 53 41 62)(22 54 42 63)(23 55 43 64)(24 56 44 57)
(1 25 5 29)(2 30 6 26)(3 27 7 31)(4 32 8 28)(9 35 13 39)(10 40 14 36)(11 37 15 33)(12 34 16 38)(17 43 21 47)(18 48 22 44)(19 45 23 41)(20 42 24 46)(49 64 53 60)(50 61 54 57)(51 58 55 62)(52 63 56 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 49 5 53)(2 63 6 59)(3 55 7 51)(4 61 8 57)(9 19 13 23)(10 44 14 48)(11 17 15 21)(12 42 16 46)(18 40 22 36)(20 38 24 34)(25 60 29 64)(26 56 30 52)(27 58 31 62)(28 54 32 50)(33 43 37 47)(35 41 39 45)
G:=sub<Sym(64)| (1,11,27,39)(2,12,28,40)(3,13,29,33)(4,14,30,34)(5,15,31,35)(6,16,32,36)(7,9,25,37)(8,10,26,38)(17,49,45,58)(18,50,46,59)(19,51,47,60)(20,52,48,61)(21,53,41,62)(22,54,42,63)(23,55,43,64)(24,56,44,57), (1,25,5,29)(2,30,6,26)(3,27,7,31)(4,32,8,28)(9,35,13,39)(10,40,14,36)(11,37,15,33)(12,34,16,38)(17,43,21,47)(18,48,22,44)(19,45,23,41)(20,42,24,46)(49,64,53,60)(50,61,54,57)(51,58,55,62)(52,63,56,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,49,5,53)(2,63,6,59)(3,55,7,51)(4,61,8,57)(9,19,13,23)(10,44,14,48)(11,17,15,21)(12,42,16,46)(18,40,22,36)(20,38,24,34)(25,60,29,64)(26,56,30,52)(27,58,31,62)(28,54,32,50)(33,43,37,47)(35,41,39,45)>;
G:=Group( (1,11,27,39)(2,12,28,40)(3,13,29,33)(4,14,30,34)(5,15,31,35)(6,16,32,36)(7,9,25,37)(8,10,26,38)(17,49,45,58)(18,50,46,59)(19,51,47,60)(20,52,48,61)(21,53,41,62)(22,54,42,63)(23,55,43,64)(24,56,44,57), (1,25,5,29)(2,30,6,26)(3,27,7,31)(4,32,8,28)(9,35,13,39)(10,40,14,36)(11,37,15,33)(12,34,16,38)(17,43,21,47)(18,48,22,44)(19,45,23,41)(20,42,24,46)(49,64,53,60)(50,61,54,57)(51,58,55,62)(52,63,56,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,49,5,53)(2,63,6,59)(3,55,7,51)(4,61,8,57)(9,19,13,23)(10,44,14,48)(11,17,15,21)(12,42,16,46)(18,40,22,36)(20,38,24,34)(25,60,29,64)(26,56,30,52)(27,58,31,62)(28,54,32,50)(33,43,37,47)(35,41,39,45) );
G=PermutationGroup([(1,11,27,39),(2,12,28,40),(3,13,29,33),(4,14,30,34),(5,15,31,35),(6,16,32,36),(7,9,25,37),(8,10,26,38),(17,49,45,58),(18,50,46,59),(19,51,47,60),(20,52,48,61),(21,53,41,62),(22,54,42,63),(23,55,43,64),(24,56,44,57)], [(1,25,5,29),(2,30,6,26),(3,27,7,31),(4,32,8,28),(9,35,13,39),(10,40,14,36),(11,37,15,33),(12,34,16,38),(17,43,21,47),(18,48,22,44),(19,45,23,41),(20,42,24,46),(49,64,53,60),(50,61,54,57),(51,58,55,62),(52,63,56,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,49,5,53),(2,63,6,59),(3,55,7,51),(4,61,8,57),(9,19,13,23),(10,44,14,48),(11,17,15,21),(12,42,16,46),(18,40,22,36),(20,38,24,34),(25,60,29,64),(26,56,30,52),(27,58,31,62),(28,54,32,50),(33,43,37,47),(35,41,39,45)])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4○D4 | C4.10D4 |
kernel | C42.114D4 | C4×M4(2) | C2×C4.10D4 | C4⋊M4(2) | C2×C4⋊Q8 | C2×C4⋊C4 | C42 | M4(2) | C2×C4 | C4 |
# reps | 1 | 1 | 4 | 1 | 1 | 8 | 4 | 4 | 4 | 4 |
Matrix representation of C42.114D4 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 10 | 0 | 0 |
0 | 0 | 10 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 7 |
0 | 0 | 0 | 0 | 7 | 1 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,10,0,0,0,0,10,16,0,0,0,0,0,0,16,7,0,0,0,0,7,1] >;
C42.114D4 in GAP, Magma, Sage, TeX
C_4^2._{114}D_4
% in TeX
G:=Group("C4^2.114D4");
// GroupNames label
G:=SmallGroup(128,698);
// by ID
G=gap.SmallGroup(128,698);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,100,2019,1018,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c^3>;
// generators/relations