Copied to
clipboard

?

G = Q85Q16order 128 = 27

1st semidirect product of Q8 and Q16 acting through Inn(Q8)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q85Q16, C42.504C23, C4.252- (1+4), (Q82).3C2, (C8×Q8).8C2, C4⋊C4.277D4, (C4×Q16).8C2, C4.30(C2×Q16), Q83(Q8⋊C4), (C4×C8).93C22, Q83Q8.4C2, C4.Q16.9C2, (C2×Q8).269D4, C4⋊C4.431C23, C4⋊C8.303C22, (C2×C4).555C24, (C2×C8).206C23, Q8.33(C4○D4), C42Q16.10C2, C4⋊Q8.184C22, C4.SD16.8C2, C2.21(C22×Q16), C2.63(Q85D4), C2.98(D4○SD16), (C2×Q8).253C23, (C4×Q8).309C22, C2.D8.201C22, Q8⋊C4.18C22, (C2×Q16).141C22, C22.815(C22×D4), C4.256(C2×C4○D4), (C2×C4).1101(C2×D4), SmallGroup(128,2095)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q85Q16
C1C2C4C2×C4C42C4×Q8Q82 — Q85Q16
C1C2C2×C4 — Q85Q16
C1C22C4×Q8 — Q85Q16
C1C2C2C2×C4 — Q85Q16

Subgroups: 272 in 168 conjugacy classes, 96 normal (18 characteristic)
C1, C2 [×3], C4 [×2], C4 [×6], C4 [×12], C22, C8 [×4], C2×C4, C2×C4 [×6], C2×C4 [×8], Q8 [×6], Q8 [×10], C42 [×3], C42 [×6], C4⋊C4, C4⋊C4 [×6], C4⋊C4 [×15], C2×C8, C2×C8 [×3], Q16 [×6], C2×Q8 [×2], C2×Q8 [×3], C2×Q8 [×3], C4×C8 [×3], Q8⋊C4, Q8⋊C4 [×9], C4⋊C8 [×3], C2.D8 [×3], C4×Q8, C4×Q8 [×6], C4×Q8 [×2], C42.C2 [×3], C4⋊Q8 [×6], C4⋊Q8 [×3], C2×Q16 [×3], C4×Q16 [×3], C8×Q8, C42Q16 [×3], C4.Q16 [×3], C4.SD16 [×3], Q83Q8, Q82, Q85Q16

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], Q16 [×4], C2×D4 [×6], C4○D4 [×2], C24, C2×Q16 [×6], C22×D4, C2×C4○D4, 2- (1+4), Q85D4, C22×Q16, D4○SD16, Q85Q16

Generators and relations
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 39 107 91)(2 40 108 92)(3 33 109 93)(4 34 110 94)(5 35 111 95)(6 36 112 96)(7 37 105 89)(8 38 106 90)(9 117 41 56)(10 118 42 49)(11 119 43 50)(12 120 44 51)(13 113 45 52)(14 114 46 53)(15 115 47 54)(16 116 48 55)(17 25 57 102)(18 26 58 103)(19 27 59 104)(20 28 60 97)(21 29 61 98)(22 30 62 99)(23 31 63 100)(24 32 64 101)(65 74 122 81)(66 75 123 82)(67 76 124 83)(68 77 125 84)(69 78 126 85)(70 79 127 86)(71 80 128 87)(72 73 121 88)
(1 127 107 70)(2 71 108 128)(3 121 109 72)(4 65 110 122)(5 123 111 66)(6 67 112 124)(7 125 105 68)(8 69 106 126)(9 20 41 60)(10 61 42 21)(11 22 43 62)(12 63 44 23)(13 24 45 64)(14 57 46 17)(15 18 47 58)(16 59 48 19)(25 53 102 114)(26 115 103 54)(27 55 104 116)(28 117 97 56)(29 49 98 118)(30 119 99 50)(31 51 100 120)(32 113 101 52)(33 73 93 88)(34 81 94 74)(35 75 95 82)(36 83 96 76)(37 77 89 84)(38 85 90 78)(39 79 91 86)(40 87 92 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 26 5 30)(2 25 6 29)(3 32 7 28)(4 31 8 27)(9 73 13 77)(10 80 14 76)(11 79 15 75)(12 78 16 74)(17 96 21 92)(18 95 22 91)(19 94 23 90)(20 93 24 89)(33 64 37 60)(34 63 38 59)(35 62 39 58)(36 61 40 57)(41 88 45 84)(42 87 46 83)(43 86 47 82)(44 85 48 81)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)(97 109 101 105)(98 108 102 112)(99 107 103 111)(100 106 104 110)(113 125 117 121)(114 124 118 128)(115 123 119 127)(116 122 120 126)

G:=sub<Sym(128)| (1,39,107,91)(2,40,108,92)(3,33,109,93)(4,34,110,94)(5,35,111,95)(6,36,112,96)(7,37,105,89)(8,38,106,90)(9,117,41,56)(10,118,42,49)(11,119,43,50)(12,120,44,51)(13,113,45,52)(14,114,46,53)(15,115,47,54)(16,116,48,55)(17,25,57,102)(18,26,58,103)(19,27,59,104)(20,28,60,97)(21,29,61,98)(22,30,62,99)(23,31,63,100)(24,32,64,101)(65,74,122,81)(66,75,123,82)(67,76,124,83)(68,77,125,84)(69,78,126,85)(70,79,127,86)(71,80,128,87)(72,73,121,88), (1,127,107,70)(2,71,108,128)(3,121,109,72)(4,65,110,122)(5,123,111,66)(6,67,112,124)(7,125,105,68)(8,69,106,126)(9,20,41,60)(10,61,42,21)(11,22,43,62)(12,63,44,23)(13,24,45,64)(14,57,46,17)(15,18,47,58)(16,59,48,19)(25,53,102,114)(26,115,103,54)(27,55,104,116)(28,117,97,56)(29,49,98,118)(30,119,99,50)(31,51,100,120)(32,113,101,52)(33,73,93,88)(34,81,94,74)(35,75,95,82)(36,83,96,76)(37,77,89,84)(38,85,90,78)(39,79,91,86)(40,87,92,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,26,5,30)(2,25,6,29)(3,32,7,28)(4,31,8,27)(9,73,13,77)(10,80,14,76)(11,79,15,75)(12,78,16,74)(17,96,21,92)(18,95,22,91)(19,94,23,90)(20,93,24,89)(33,64,37,60)(34,63,38,59)(35,62,39,58)(36,61,40,57)(41,88,45,84)(42,87,46,83)(43,86,47,82)(44,85,48,81)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110)(113,125,117,121)(114,124,118,128)(115,123,119,127)(116,122,120,126)>;

G:=Group( (1,39,107,91)(2,40,108,92)(3,33,109,93)(4,34,110,94)(5,35,111,95)(6,36,112,96)(7,37,105,89)(8,38,106,90)(9,117,41,56)(10,118,42,49)(11,119,43,50)(12,120,44,51)(13,113,45,52)(14,114,46,53)(15,115,47,54)(16,116,48,55)(17,25,57,102)(18,26,58,103)(19,27,59,104)(20,28,60,97)(21,29,61,98)(22,30,62,99)(23,31,63,100)(24,32,64,101)(65,74,122,81)(66,75,123,82)(67,76,124,83)(68,77,125,84)(69,78,126,85)(70,79,127,86)(71,80,128,87)(72,73,121,88), (1,127,107,70)(2,71,108,128)(3,121,109,72)(4,65,110,122)(5,123,111,66)(6,67,112,124)(7,125,105,68)(8,69,106,126)(9,20,41,60)(10,61,42,21)(11,22,43,62)(12,63,44,23)(13,24,45,64)(14,57,46,17)(15,18,47,58)(16,59,48,19)(25,53,102,114)(26,115,103,54)(27,55,104,116)(28,117,97,56)(29,49,98,118)(30,119,99,50)(31,51,100,120)(32,113,101,52)(33,73,93,88)(34,81,94,74)(35,75,95,82)(36,83,96,76)(37,77,89,84)(38,85,90,78)(39,79,91,86)(40,87,92,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,26,5,30)(2,25,6,29)(3,32,7,28)(4,31,8,27)(9,73,13,77)(10,80,14,76)(11,79,15,75)(12,78,16,74)(17,96,21,92)(18,95,22,91)(19,94,23,90)(20,93,24,89)(33,64,37,60)(34,63,38,59)(35,62,39,58)(36,61,40,57)(41,88,45,84)(42,87,46,83)(43,86,47,82)(44,85,48,81)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110)(113,125,117,121)(114,124,118,128)(115,123,119,127)(116,122,120,126) );

G=PermutationGroup([(1,39,107,91),(2,40,108,92),(3,33,109,93),(4,34,110,94),(5,35,111,95),(6,36,112,96),(7,37,105,89),(8,38,106,90),(9,117,41,56),(10,118,42,49),(11,119,43,50),(12,120,44,51),(13,113,45,52),(14,114,46,53),(15,115,47,54),(16,116,48,55),(17,25,57,102),(18,26,58,103),(19,27,59,104),(20,28,60,97),(21,29,61,98),(22,30,62,99),(23,31,63,100),(24,32,64,101),(65,74,122,81),(66,75,123,82),(67,76,124,83),(68,77,125,84),(69,78,126,85),(70,79,127,86),(71,80,128,87),(72,73,121,88)], [(1,127,107,70),(2,71,108,128),(3,121,109,72),(4,65,110,122),(5,123,111,66),(6,67,112,124),(7,125,105,68),(8,69,106,126),(9,20,41,60),(10,61,42,21),(11,22,43,62),(12,63,44,23),(13,24,45,64),(14,57,46,17),(15,18,47,58),(16,59,48,19),(25,53,102,114),(26,115,103,54),(27,55,104,116),(28,117,97,56),(29,49,98,118),(30,119,99,50),(31,51,100,120),(32,113,101,52),(33,73,93,88),(34,81,94,74),(35,75,95,82),(36,83,96,76),(37,77,89,84),(38,85,90,78),(39,79,91,86),(40,87,92,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,26,5,30),(2,25,6,29),(3,32,7,28),(4,31,8,27),(9,73,13,77),(10,80,14,76),(11,79,15,75),(12,78,16,74),(17,96,21,92),(18,95,22,91),(19,94,23,90),(20,93,24,89),(33,64,37,60),(34,63,38,59),(35,62,39,58),(36,61,40,57),(41,88,45,84),(42,87,46,83),(43,86,47,82),(44,85,48,81),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72),(97,109,101,105),(98,108,102,112),(99,107,103,111),(100,106,104,110),(113,125,117,121),(114,124,118,128),(115,123,119,127),(116,122,120,126)])

Matrix representation G ⊆ GL4(𝔽17) generated by

16000
01600
0001
00160
,
16000
01600
0071
00110
,
8000
51500
00013
0040
,
11500
11600
00160
00016
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,7,1,0,0,1,10],[8,5,0,0,0,15,0,0,0,0,0,4,0,0,13,0],[1,1,0,0,15,16,0,0,0,0,16,0,0,0,0,16] >;

35 conjugacy classes

class 1 2A2B2C4A···4H4I···4O4P···4U8A8B8C8D8E···8J
order12224···44···44···488888···8
size11112···24···48···822224···4

35 irreducible representations

dim11111111222244
type++++++++++--
imageC1C2C2C2C2C2C2C2D4D4Q16C4○D42- (1+4)D4○SD16
kernelQ85Q16C4×Q16C8×Q8C42Q16C4.Q16C4.SD16Q83Q8Q82C4⋊C4C2×Q8Q8Q8C4C2
# reps13133311318412

In GAP, Magma, Sage, TeX

Q_8\rtimes_5Q_{16}
% in TeX

G:=Group("Q8:5Q16");
// GroupNames label

G:=SmallGroup(128,2095);
// by ID

G=gap.SmallGroup(128,2095);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,352,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽