Copied to
clipboard

G = Q8⋊Q16order 128 = 27

1st semidirect product of Q8 and Q16 acting via Q16/Q8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q82Q16, C42.194C23, Q82.1C2, C4⋊C4.53D4, Q8⋊C8.3C2, C4⋊C8.7C22, C4.16(C2×Q16), (C4×C8).43C22, C4.Q16.1C2, (C2×Q8).197D4, C4⋊Q16.3C2, C4⋊Q8.15C22, C4.6Q16.1C2, (C4×Q8).27C22, C2.22(D44D4), C4.32(C8.C22), C22.160C22≀C2, C2.11(C22⋊Q16), (C2×C4).951(C2×D4), SmallGroup(128,365)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q8⋊Q16
C1C2C22C2×C4C42C4×Q8Q82 — Q8⋊Q16
C1C22C42 — Q8⋊Q16
C1C22C42 — Q8⋊Q16
C1C22C22C42 — Q8⋊Q16

Generators and relations for Q8⋊Q16
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=dad-1=a-1, ac=ca, cbc-1=a-1b, bd=db, dcd-1=c-1 >

Subgroups: 216 in 103 conjugacy classes, 38 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C2.D8, C4×Q8, C4×Q8, C4⋊Q8, C4⋊Q8, C2×Q16, Q8⋊C8, C4.6Q16, C4.Q16, C4⋊Q16, Q82, Q8⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C8.C22, C22⋊Q16, D44D4, Q8⋊Q16

Character table of Q8⋊Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E8F8G8H
 size 111122224444488881644448888
ρ111111111111111111111111111    trivial
ρ211111111-111-111-1-1-11-1-1-1-111-1-1    linear of order 2
ρ311111111-111-111-1-1-1-11111-1-111    linear of order 2
ρ411111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ511111111-11-1-1-1-11-1111111-1-1-1-1    linear of order 2
ρ61111111111-11-1-1-11-11-1-1-1-1-1-111    linear of order 2
ρ71111111111-11-1-1-11-1-1111111-1-1    linear of order 2
ρ811111111-11-1-1-1-11-11-1-1-1-1-11111    linear of order 2
ρ92222-222-22-202000-20000000000    orthogonal lifted from D4
ρ102222-222-2-2-20-200020000000000    orthogonal lifted from D4
ρ112222-2-2-2-202000020-2000000000    orthogonal lifted from D4
ρ122222-2-2-2-2020000-202000000000    orthogonal lifted from D4
ρ1322222-2-220-2202-2000000000000    orthogonal lifted from D4
ρ1422222-2-220-2-20-22000000000000    orthogonal lifted from D4
ρ1522-2-202-20200-2000000-222-2-2200    symplectic lifted from Q16, Schur index 2
ρ1622-2-202-20200-20000002-2-222-200    symplectic lifted from Q16, Schur index 2
ρ1722-2-202-20-20020000002-2-22-2200    symplectic lifted from Q16, Schur index 2
ρ182-2-22200-20020-20000022-2-200-22    symplectic lifted from Q16, Schur index 2
ρ192-2-22200-200-20200000-2-22200-22    symplectic lifted from Q16, Schur index 2
ρ2022-2-202-20-2002000000-222-22-200    symplectic lifted from Q16, Schur index 2
ρ212-2-22200-20020-200000-2-222002-2    symplectic lifted from Q16, Schur index 2
ρ222-2-22200-200-2020000022-2-2002-2    symplectic lifted from Q16, Schur index 2
ρ234-44-400000000000000-22-220000    orthogonal lifted from D44D4
ρ244-44-4000000000000002-22-20000    orthogonal lifted from D44D4
ρ2544-4-40-440000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ264-4-44-4004000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of Q8⋊Q16
Regular action on 128 points
Generators in S128
(1 127 34 102)(2 128 35 103)(3 121 36 104)(4 122 37 97)(5 123 38 98)(6 124 39 99)(7 125 40 100)(8 126 33 101)(9 44 105 67)(10 45 106 68)(11 46 107 69)(12 47 108 70)(13 48 109 71)(14 41 110 72)(15 42 111 65)(16 43 112 66)(17 78 96 85)(18 79 89 86)(19 80 90 87)(20 73 91 88)(21 74 92 81)(22 75 93 82)(23 76 94 83)(24 77 95 84)(25 51 114 59)(26 52 115 60)(27 53 116 61)(28 54 117 62)(29 55 118 63)(30 56 119 64)(31 49 120 57)(32 50 113 58)
(1 63 34 55)(2 30 35 119)(3 49 36 57)(4 113 37 32)(5 59 38 51)(6 26 39 115)(7 53 40 61)(8 117 33 28)(9 87 105 80)(10 20 106 91)(11 74 107 81)(12 93 108 22)(13 83 109 76)(14 24 110 95)(15 78 111 85)(16 89 112 18)(17 65 96 42)(19 44 90 67)(21 69 92 46)(23 48 94 71)(25 123 114 98)(27 100 116 125)(29 127 118 102)(31 104 120 121)(41 84 72 77)(43 79 66 86)(45 88 68 73)(47 75 70 82)(50 97 58 122)(52 124 60 99)(54 101 62 126)(56 128 64 103)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 88 5 84)(2 87 6 83)(3 86 7 82)(4 85 8 81)(9 115 13 119)(10 114 14 118)(11 113 15 117)(12 120 16 116)(17 101 21 97)(18 100 22 104)(19 99 23 103)(20 98 24 102)(25 110 29 106)(26 109 30 105)(27 108 31 112)(28 107 32 111)(33 74 37 78)(34 73 38 77)(35 80 39 76)(36 79 40 75)(41 55 45 51)(42 54 46 50)(43 53 47 49)(44 52 48 56)(57 66 61 70)(58 65 62 69)(59 72 63 68)(60 71 64 67)(89 125 93 121)(90 124 94 128)(91 123 95 127)(92 122 96 126)

G:=sub<Sym(128)| (1,127,34,102)(2,128,35,103)(3,121,36,104)(4,122,37,97)(5,123,38,98)(6,124,39,99)(7,125,40,100)(8,126,33,101)(9,44,105,67)(10,45,106,68)(11,46,107,69)(12,47,108,70)(13,48,109,71)(14,41,110,72)(15,42,111,65)(16,43,112,66)(17,78,96,85)(18,79,89,86)(19,80,90,87)(20,73,91,88)(21,74,92,81)(22,75,93,82)(23,76,94,83)(24,77,95,84)(25,51,114,59)(26,52,115,60)(27,53,116,61)(28,54,117,62)(29,55,118,63)(30,56,119,64)(31,49,120,57)(32,50,113,58), (1,63,34,55)(2,30,35,119)(3,49,36,57)(4,113,37,32)(5,59,38,51)(6,26,39,115)(7,53,40,61)(8,117,33,28)(9,87,105,80)(10,20,106,91)(11,74,107,81)(12,93,108,22)(13,83,109,76)(14,24,110,95)(15,78,111,85)(16,89,112,18)(17,65,96,42)(19,44,90,67)(21,69,92,46)(23,48,94,71)(25,123,114,98)(27,100,116,125)(29,127,118,102)(31,104,120,121)(41,84,72,77)(43,79,66,86)(45,88,68,73)(47,75,70,82)(50,97,58,122)(52,124,60,99)(54,101,62,126)(56,128,64,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,5,84)(2,87,6,83)(3,86,7,82)(4,85,8,81)(9,115,13,119)(10,114,14,118)(11,113,15,117)(12,120,16,116)(17,101,21,97)(18,100,22,104)(19,99,23,103)(20,98,24,102)(25,110,29,106)(26,109,30,105)(27,108,31,112)(28,107,32,111)(33,74,37,78)(34,73,38,77)(35,80,39,76)(36,79,40,75)(41,55,45,51)(42,54,46,50)(43,53,47,49)(44,52,48,56)(57,66,61,70)(58,65,62,69)(59,72,63,68)(60,71,64,67)(89,125,93,121)(90,124,94,128)(91,123,95,127)(92,122,96,126)>;

G:=Group( (1,127,34,102)(2,128,35,103)(3,121,36,104)(4,122,37,97)(5,123,38,98)(6,124,39,99)(7,125,40,100)(8,126,33,101)(9,44,105,67)(10,45,106,68)(11,46,107,69)(12,47,108,70)(13,48,109,71)(14,41,110,72)(15,42,111,65)(16,43,112,66)(17,78,96,85)(18,79,89,86)(19,80,90,87)(20,73,91,88)(21,74,92,81)(22,75,93,82)(23,76,94,83)(24,77,95,84)(25,51,114,59)(26,52,115,60)(27,53,116,61)(28,54,117,62)(29,55,118,63)(30,56,119,64)(31,49,120,57)(32,50,113,58), (1,63,34,55)(2,30,35,119)(3,49,36,57)(4,113,37,32)(5,59,38,51)(6,26,39,115)(7,53,40,61)(8,117,33,28)(9,87,105,80)(10,20,106,91)(11,74,107,81)(12,93,108,22)(13,83,109,76)(14,24,110,95)(15,78,111,85)(16,89,112,18)(17,65,96,42)(19,44,90,67)(21,69,92,46)(23,48,94,71)(25,123,114,98)(27,100,116,125)(29,127,118,102)(31,104,120,121)(41,84,72,77)(43,79,66,86)(45,88,68,73)(47,75,70,82)(50,97,58,122)(52,124,60,99)(54,101,62,126)(56,128,64,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,5,84)(2,87,6,83)(3,86,7,82)(4,85,8,81)(9,115,13,119)(10,114,14,118)(11,113,15,117)(12,120,16,116)(17,101,21,97)(18,100,22,104)(19,99,23,103)(20,98,24,102)(25,110,29,106)(26,109,30,105)(27,108,31,112)(28,107,32,111)(33,74,37,78)(34,73,38,77)(35,80,39,76)(36,79,40,75)(41,55,45,51)(42,54,46,50)(43,53,47,49)(44,52,48,56)(57,66,61,70)(58,65,62,69)(59,72,63,68)(60,71,64,67)(89,125,93,121)(90,124,94,128)(91,123,95,127)(92,122,96,126) );

G=PermutationGroup([[(1,127,34,102),(2,128,35,103),(3,121,36,104),(4,122,37,97),(5,123,38,98),(6,124,39,99),(7,125,40,100),(8,126,33,101),(9,44,105,67),(10,45,106,68),(11,46,107,69),(12,47,108,70),(13,48,109,71),(14,41,110,72),(15,42,111,65),(16,43,112,66),(17,78,96,85),(18,79,89,86),(19,80,90,87),(20,73,91,88),(21,74,92,81),(22,75,93,82),(23,76,94,83),(24,77,95,84),(25,51,114,59),(26,52,115,60),(27,53,116,61),(28,54,117,62),(29,55,118,63),(30,56,119,64),(31,49,120,57),(32,50,113,58)], [(1,63,34,55),(2,30,35,119),(3,49,36,57),(4,113,37,32),(5,59,38,51),(6,26,39,115),(7,53,40,61),(8,117,33,28),(9,87,105,80),(10,20,106,91),(11,74,107,81),(12,93,108,22),(13,83,109,76),(14,24,110,95),(15,78,111,85),(16,89,112,18),(17,65,96,42),(19,44,90,67),(21,69,92,46),(23,48,94,71),(25,123,114,98),(27,100,116,125),(29,127,118,102),(31,104,120,121),(41,84,72,77),(43,79,66,86),(45,88,68,73),(47,75,70,82),(50,97,58,122),(52,124,60,99),(54,101,62,126),(56,128,64,103)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,88,5,84),(2,87,6,83),(3,86,7,82),(4,85,8,81),(9,115,13,119),(10,114,14,118),(11,113,15,117),(12,120,16,116),(17,101,21,97),(18,100,22,104),(19,99,23,103),(20,98,24,102),(25,110,29,106),(26,109,30,105),(27,108,31,112),(28,107,32,111),(33,74,37,78),(34,73,38,77),(35,80,39,76),(36,79,40,75),(41,55,45,51),(42,54,46,50),(43,53,47,49),(44,52,48,56),(57,66,61,70),(58,65,62,69),(59,72,63,68),(60,71,64,67),(89,125,93,121),(90,124,94,128),(91,123,95,127),(92,122,96,126)]])

Matrix representation of Q8⋊Q16 in GL4(𝔽17) generated by

1000
0100
001615
0011
,
16000
01600
0093
0018
,
111100
3000
001111
0030
,
61400
11100
00814
00169
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,1,0,0,15,1],[16,0,0,0,0,16,0,0,0,0,9,1,0,0,3,8],[11,3,0,0,11,0,0,0,0,0,11,3,0,0,11,0],[6,1,0,0,14,11,0,0,0,0,8,16,0,0,14,9] >;

Q8⋊Q16 in GAP, Magma, Sage, TeX

Q_8\rtimes Q_{16}
% in TeX

G:=Group("Q8:Q16");
// GroupNames label

G:=SmallGroup(128,365);
// by ID

G=gap.SmallGroup(128,365);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,232,422,352,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of Q8⋊Q16 in TeX

׿
×
𝔽