p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊2Q16, C42.194C23, Q82.1C2, C4⋊C4.53D4, Q8⋊C8.3C2, C4⋊C8.7C22, C4.16(C2×Q16), (C4×C8).43C22, C4.Q16.1C2, (C2×Q8).197D4, C4⋊Q16.3C2, C4⋊Q8.15C22, C4.6Q16.1C2, (C4×Q8).27C22, C2.22(D4⋊4D4), C4.32(C8.C22), C22.160C22≀C2, C2.11(C22⋊Q16), (C2×C4).951(C2×D4), SmallGroup(128,365)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=dad-1=a-1, ac=ca, cbc-1=a-1b, bd=db, dcd-1=c-1 >
Subgroups: 216 in 103 conjugacy classes, 38 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C2.D8, C4×Q8, C4×Q8, C4⋊Q8, C4⋊Q8, C2×Q16, Q8⋊C8, C4.6Q16, C4.Q16, C4⋊Q16, Q82, Q8⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C8.C22, C22⋊Q16, D4⋊4D4, Q8⋊Q16
Character table of Q8⋊Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 127 34 102)(2 128 35 103)(3 121 36 104)(4 122 37 97)(5 123 38 98)(6 124 39 99)(7 125 40 100)(8 126 33 101)(9 44 105 67)(10 45 106 68)(11 46 107 69)(12 47 108 70)(13 48 109 71)(14 41 110 72)(15 42 111 65)(16 43 112 66)(17 78 96 85)(18 79 89 86)(19 80 90 87)(20 73 91 88)(21 74 92 81)(22 75 93 82)(23 76 94 83)(24 77 95 84)(25 51 114 59)(26 52 115 60)(27 53 116 61)(28 54 117 62)(29 55 118 63)(30 56 119 64)(31 49 120 57)(32 50 113 58)
(1 63 34 55)(2 30 35 119)(3 49 36 57)(4 113 37 32)(5 59 38 51)(6 26 39 115)(7 53 40 61)(8 117 33 28)(9 87 105 80)(10 20 106 91)(11 74 107 81)(12 93 108 22)(13 83 109 76)(14 24 110 95)(15 78 111 85)(16 89 112 18)(17 65 96 42)(19 44 90 67)(21 69 92 46)(23 48 94 71)(25 123 114 98)(27 100 116 125)(29 127 118 102)(31 104 120 121)(41 84 72 77)(43 79 66 86)(45 88 68 73)(47 75 70 82)(50 97 58 122)(52 124 60 99)(54 101 62 126)(56 128 64 103)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 88 5 84)(2 87 6 83)(3 86 7 82)(4 85 8 81)(9 115 13 119)(10 114 14 118)(11 113 15 117)(12 120 16 116)(17 101 21 97)(18 100 22 104)(19 99 23 103)(20 98 24 102)(25 110 29 106)(26 109 30 105)(27 108 31 112)(28 107 32 111)(33 74 37 78)(34 73 38 77)(35 80 39 76)(36 79 40 75)(41 55 45 51)(42 54 46 50)(43 53 47 49)(44 52 48 56)(57 66 61 70)(58 65 62 69)(59 72 63 68)(60 71 64 67)(89 125 93 121)(90 124 94 128)(91 123 95 127)(92 122 96 126)
G:=sub<Sym(128)| (1,127,34,102)(2,128,35,103)(3,121,36,104)(4,122,37,97)(5,123,38,98)(6,124,39,99)(7,125,40,100)(8,126,33,101)(9,44,105,67)(10,45,106,68)(11,46,107,69)(12,47,108,70)(13,48,109,71)(14,41,110,72)(15,42,111,65)(16,43,112,66)(17,78,96,85)(18,79,89,86)(19,80,90,87)(20,73,91,88)(21,74,92,81)(22,75,93,82)(23,76,94,83)(24,77,95,84)(25,51,114,59)(26,52,115,60)(27,53,116,61)(28,54,117,62)(29,55,118,63)(30,56,119,64)(31,49,120,57)(32,50,113,58), (1,63,34,55)(2,30,35,119)(3,49,36,57)(4,113,37,32)(5,59,38,51)(6,26,39,115)(7,53,40,61)(8,117,33,28)(9,87,105,80)(10,20,106,91)(11,74,107,81)(12,93,108,22)(13,83,109,76)(14,24,110,95)(15,78,111,85)(16,89,112,18)(17,65,96,42)(19,44,90,67)(21,69,92,46)(23,48,94,71)(25,123,114,98)(27,100,116,125)(29,127,118,102)(31,104,120,121)(41,84,72,77)(43,79,66,86)(45,88,68,73)(47,75,70,82)(50,97,58,122)(52,124,60,99)(54,101,62,126)(56,128,64,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,5,84)(2,87,6,83)(3,86,7,82)(4,85,8,81)(9,115,13,119)(10,114,14,118)(11,113,15,117)(12,120,16,116)(17,101,21,97)(18,100,22,104)(19,99,23,103)(20,98,24,102)(25,110,29,106)(26,109,30,105)(27,108,31,112)(28,107,32,111)(33,74,37,78)(34,73,38,77)(35,80,39,76)(36,79,40,75)(41,55,45,51)(42,54,46,50)(43,53,47,49)(44,52,48,56)(57,66,61,70)(58,65,62,69)(59,72,63,68)(60,71,64,67)(89,125,93,121)(90,124,94,128)(91,123,95,127)(92,122,96,126)>;
G:=Group( (1,127,34,102)(2,128,35,103)(3,121,36,104)(4,122,37,97)(5,123,38,98)(6,124,39,99)(7,125,40,100)(8,126,33,101)(9,44,105,67)(10,45,106,68)(11,46,107,69)(12,47,108,70)(13,48,109,71)(14,41,110,72)(15,42,111,65)(16,43,112,66)(17,78,96,85)(18,79,89,86)(19,80,90,87)(20,73,91,88)(21,74,92,81)(22,75,93,82)(23,76,94,83)(24,77,95,84)(25,51,114,59)(26,52,115,60)(27,53,116,61)(28,54,117,62)(29,55,118,63)(30,56,119,64)(31,49,120,57)(32,50,113,58), (1,63,34,55)(2,30,35,119)(3,49,36,57)(4,113,37,32)(5,59,38,51)(6,26,39,115)(7,53,40,61)(8,117,33,28)(9,87,105,80)(10,20,106,91)(11,74,107,81)(12,93,108,22)(13,83,109,76)(14,24,110,95)(15,78,111,85)(16,89,112,18)(17,65,96,42)(19,44,90,67)(21,69,92,46)(23,48,94,71)(25,123,114,98)(27,100,116,125)(29,127,118,102)(31,104,120,121)(41,84,72,77)(43,79,66,86)(45,88,68,73)(47,75,70,82)(50,97,58,122)(52,124,60,99)(54,101,62,126)(56,128,64,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,5,84)(2,87,6,83)(3,86,7,82)(4,85,8,81)(9,115,13,119)(10,114,14,118)(11,113,15,117)(12,120,16,116)(17,101,21,97)(18,100,22,104)(19,99,23,103)(20,98,24,102)(25,110,29,106)(26,109,30,105)(27,108,31,112)(28,107,32,111)(33,74,37,78)(34,73,38,77)(35,80,39,76)(36,79,40,75)(41,55,45,51)(42,54,46,50)(43,53,47,49)(44,52,48,56)(57,66,61,70)(58,65,62,69)(59,72,63,68)(60,71,64,67)(89,125,93,121)(90,124,94,128)(91,123,95,127)(92,122,96,126) );
G=PermutationGroup([[(1,127,34,102),(2,128,35,103),(3,121,36,104),(4,122,37,97),(5,123,38,98),(6,124,39,99),(7,125,40,100),(8,126,33,101),(9,44,105,67),(10,45,106,68),(11,46,107,69),(12,47,108,70),(13,48,109,71),(14,41,110,72),(15,42,111,65),(16,43,112,66),(17,78,96,85),(18,79,89,86),(19,80,90,87),(20,73,91,88),(21,74,92,81),(22,75,93,82),(23,76,94,83),(24,77,95,84),(25,51,114,59),(26,52,115,60),(27,53,116,61),(28,54,117,62),(29,55,118,63),(30,56,119,64),(31,49,120,57),(32,50,113,58)], [(1,63,34,55),(2,30,35,119),(3,49,36,57),(4,113,37,32),(5,59,38,51),(6,26,39,115),(7,53,40,61),(8,117,33,28),(9,87,105,80),(10,20,106,91),(11,74,107,81),(12,93,108,22),(13,83,109,76),(14,24,110,95),(15,78,111,85),(16,89,112,18),(17,65,96,42),(19,44,90,67),(21,69,92,46),(23,48,94,71),(25,123,114,98),(27,100,116,125),(29,127,118,102),(31,104,120,121),(41,84,72,77),(43,79,66,86),(45,88,68,73),(47,75,70,82),(50,97,58,122),(52,124,60,99),(54,101,62,126),(56,128,64,103)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,88,5,84),(2,87,6,83),(3,86,7,82),(4,85,8,81),(9,115,13,119),(10,114,14,118),(11,113,15,117),(12,120,16,116),(17,101,21,97),(18,100,22,104),(19,99,23,103),(20,98,24,102),(25,110,29,106),(26,109,30,105),(27,108,31,112),(28,107,32,111),(33,74,37,78),(34,73,38,77),(35,80,39,76),(36,79,40,75),(41,55,45,51),(42,54,46,50),(43,53,47,49),(44,52,48,56),(57,66,61,70),(58,65,62,69),(59,72,63,68),(60,71,64,67),(89,125,93,121),(90,124,94,128),(91,123,95,127),(92,122,96,126)]])
Matrix representation of Q8⋊Q16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 15 |
0 | 0 | 1 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 9 | 3 |
0 | 0 | 1 | 8 |
11 | 11 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 0 |
6 | 14 | 0 | 0 |
1 | 11 | 0 | 0 |
0 | 0 | 8 | 14 |
0 | 0 | 16 | 9 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,1,0,0,15,1],[16,0,0,0,0,16,0,0,0,0,9,1,0,0,3,8],[11,3,0,0,11,0,0,0,0,0,11,3,0,0,11,0],[6,1,0,0,14,11,0,0,0,0,8,16,0,0,14,9] >;
Q8⋊Q16 in GAP, Magma, Sage, TeX
Q_8\rtimes Q_{16}
% in TeX
G:=Group("Q8:Q16");
// GroupNames label
G:=SmallGroup(128,365);
// by ID
G=gap.SmallGroup(128,365);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,232,422,352,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export