Copied to
clipboard

G = (C2×C4).28D8order 128 = 27

21st non-split extension by C2×C4 of D8 acting via D8/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4⋊C4.5Q8, (C2×C4).28D8, (C2×C4).45SD16, C22.93(C2×D8), C2.8(C4.4D8), C23.945(C2×D4), (C22×C4).328D4, C429C4.20C2, C2.11(D4⋊Q8), C2.11(Q8⋊Q8), (C22×C8).90C22, C4.25(C42.C2), C4.22(C422C2), C22.4Q16.30C2, (C2×C42).396C22, C22.110(C2×SD16), (C22×C4).1479C23, C2.11(C22.D8), C22.97(C4.4D4), C22.122(C22⋊Q8), C2.11(C23.47D4), C22.150(C8.C22), C22.7C42.15C2, C23.65C23.26C2, C2.8(C42.30C22), C2.5(C23.83C23), C22.132(C22.D4), (C2×C4).296(C2×Q8), (C2×C4).785(C4○D4), (C2×C4⋊C4).168C22, SmallGroup(128,831)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C4).28D8
C1C2C4C2×C4C22×C4C2×C4⋊C4C22.4Q16 — (C2×C4).28D8
C1C2C22×C4 — (C2×C4).28D8
C1C23C2×C42 — (C2×C4).28D8
C1C2C2C22×C4 — (C2×C4).28D8

Generators and relations for (C2×C4).28D8
 G = < a,b,c,d | a2=b4=c8=1, d2=ab2, ab=ba, ac=ca, ad=da, cbc-1=ab-1, dbd-1=b-1, dcd-1=ac-1 >

Subgroups: 224 in 107 conjugacy classes, 50 normal (28 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.7C42, C22.4Q16, C429C4, C23.65C23, (C2×C4).28D8
Quotients: C1, C2, C22, D4, Q8, C23, D8, SD16, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C2×D8, C2×SD16, C8.C22, C23.83C23, D4⋊Q8, Q8⋊Q8, C22.D8, C23.47D4, C4.4D8, C42.30C22, (C2×C4).28D8

Smallest permutation representation of (C2×C4).28D8
Regular action on 128 points
Generators in S128
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(17 44)(18 45)(19 46)(20 47)(21 48)(22 41)(23 42)(24 43)(49 97)(50 98)(51 99)(52 100)(53 101)(54 102)(55 103)(56 104)(57 81)(58 82)(59 83)(60 84)(61 85)(62 86)(63 87)(64 88)(65 80)(66 73)(67 74)(68 75)(69 76)(70 77)(71 78)(72 79)(89 126)(90 127)(91 128)(92 121)(93 122)(94 123)(95 124)(96 125)(105 114)(106 115)(107 116)(108 117)(109 118)(110 119)(111 120)(112 113)
(1 94 87 98)(2 51 88 124)(3 96 81 100)(4 53 82 126)(5 90 83 102)(6 55 84 128)(7 92 85 104)(8 49 86 122)(9 76 41 112)(10 114 42 70)(11 78 43 106)(12 116 44 72)(13 80 45 108)(14 118 46 66)(15 74 47 110)(16 120 48 68)(17 79 39 107)(18 117 40 65)(19 73 33 109)(20 119 34 67)(21 75 35 111)(22 113 36 69)(23 77 37 105)(24 115 38 71)(25 127 59 54)(26 103 60 91)(27 121 61 56)(28 97 62 93)(29 123 63 50)(30 99 64 95)(31 125 57 52)(32 101 58 89)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 33 63 46)(2 13 64 18)(3 39 57 44)(4 11 58 24)(5 37 59 42)(6 9 60 22)(7 35 61 48)(8 15 62 20)(10 83 23 25)(12 81 17 31)(14 87 19 29)(16 85 21 27)(26 36 84 41)(28 34 86 47)(30 40 88 45)(32 38 82 43)(49 110 93 67)(50 118 94 73)(51 108 95 65)(52 116 96 79)(53 106 89 71)(54 114 90 77)(55 112 91 69)(56 120 92 75)(66 98 109 123)(68 104 111 121)(70 102 105 127)(72 100 107 125)(74 97 119 122)(76 103 113 128)(78 101 115 126)(80 99 117 124)

G:=sub<Sym(128)| (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,80)(66,73)(67,74)(68,75)(69,76)(70,77)(71,78)(72,79)(89,126)(90,127)(91,128)(92,121)(93,122)(94,123)(95,124)(96,125)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(111,120)(112,113), (1,94,87,98)(2,51,88,124)(3,96,81,100)(4,53,82,126)(5,90,83,102)(6,55,84,128)(7,92,85,104)(8,49,86,122)(9,76,41,112)(10,114,42,70)(11,78,43,106)(12,116,44,72)(13,80,45,108)(14,118,46,66)(15,74,47,110)(16,120,48,68)(17,79,39,107)(18,117,40,65)(19,73,33,109)(20,119,34,67)(21,75,35,111)(22,113,36,69)(23,77,37,105)(24,115,38,71)(25,127,59,54)(26,103,60,91)(27,121,61,56)(28,97,62,93)(29,123,63,50)(30,99,64,95)(31,125,57,52)(32,101,58,89), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,33,63,46)(2,13,64,18)(3,39,57,44)(4,11,58,24)(5,37,59,42)(6,9,60,22)(7,35,61,48)(8,15,62,20)(10,83,23,25)(12,81,17,31)(14,87,19,29)(16,85,21,27)(26,36,84,41)(28,34,86,47)(30,40,88,45)(32,38,82,43)(49,110,93,67)(50,118,94,73)(51,108,95,65)(52,116,96,79)(53,106,89,71)(54,114,90,77)(55,112,91,69)(56,120,92,75)(66,98,109,123)(68,104,111,121)(70,102,105,127)(72,100,107,125)(74,97,119,122)(76,103,113,128)(78,101,115,126)(80,99,117,124)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,80)(66,73)(67,74)(68,75)(69,76)(70,77)(71,78)(72,79)(89,126)(90,127)(91,128)(92,121)(93,122)(94,123)(95,124)(96,125)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(111,120)(112,113), (1,94,87,98)(2,51,88,124)(3,96,81,100)(4,53,82,126)(5,90,83,102)(6,55,84,128)(7,92,85,104)(8,49,86,122)(9,76,41,112)(10,114,42,70)(11,78,43,106)(12,116,44,72)(13,80,45,108)(14,118,46,66)(15,74,47,110)(16,120,48,68)(17,79,39,107)(18,117,40,65)(19,73,33,109)(20,119,34,67)(21,75,35,111)(22,113,36,69)(23,77,37,105)(24,115,38,71)(25,127,59,54)(26,103,60,91)(27,121,61,56)(28,97,62,93)(29,123,63,50)(30,99,64,95)(31,125,57,52)(32,101,58,89), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,33,63,46)(2,13,64,18)(3,39,57,44)(4,11,58,24)(5,37,59,42)(6,9,60,22)(7,35,61,48)(8,15,62,20)(10,83,23,25)(12,81,17,31)(14,87,19,29)(16,85,21,27)(26,36,84,41)(28,34,86,47)(30,40,88,45)(32,38,82,43)(49,110,93,67)(50,118,94,73)(51,108,95,65)(52,116,96,79)(53,106,89,71)(54,114,90,77)(55,112,91,69)(56,120,92,75)(66,98,109,123)(68,104,111,121)(70,102,105,127)(72,100,107,125)(74,97,119,122)(76,103,113,128)(78,101,115,126)(80,99,117,124) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(17,44),(18,45),(19,46),(20,47),(21,48),(22,41),(23,42),(24,43),(49,97),(50,98),(51,99),(52,100),(53,101),(54,102),(55,103),(56,104),(57,81),(58,82),(59,83),(60,84),(61,85),(62,86),(63,87),(64,88),(65,80),(66,73),(67,74),(68,75),(69,76),(70,77),(71,78),(72,79),(89,126),(90,127),(91,128),(92,121),(93,122),(94,123),(95,124),(96,125),(105,114),(106,115),(107,116),(108,117),(109,118),(110,119),(111,120),(112,113)], [(1,94,87,98),(2,51,88,124),(3,96,81,100),(4,53,82,126),(5,90,83,102),(6,55,84,128),(7,92,85,104),(8,49,86,122),(9,76,41,112),(10,114,42,70),(11,78,43,106),(12,116,44,72),(13,80,45,108),(14,118,46,66),(15,74,47,110),(16,120,48,68),(17,79,39,107),(18,117,40,65),(19,73,33,109),(20,119,34,67),(21,75,35,111),(22,113,36,69),(23,77,37,105),(24,115,38,71),(25,127,59,54),(26,103,60,91),(27,121,61,56),(28,97,62,93),(29,123,63,50),(30,99,64,95),(31,125,57,52),(32,101,58,89)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,33,63,46),(2,13,64,18),(3,39,57,44),(4,11,58,24),(5,37,59,42),(6,9,60,22),(7,35,61,48),(8,15,62,20),(10,83,23,25),(12,81,17,31),(14,87,19,29),(16,85,21,27),(26,36,84,41),(28,34,86,47),(30,40,88,45),(32,38,82,43),(49,110,93,67),(50,118,94,73),(51,108,95,65),(52,116,96,79),(53,106,89,71),(54,114,90,77),(55,112,91,69),(56,120,92,75),(66,98,109,123),(68,104,111,121),(70,102,105,127),(72,100,107,125),(74,97,119,122),(76,103,113,128),(78,101,115,126),(80,99,117,124)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim11111222224
type+++++-++-
imageC1C2C2C2C2Q8D4D8SD16C4○D4C8.C22
kernel(C2×C4).28D8C22.7C42C22.4Q16C429C4C23.65C23C4⋊C4C22×C4C2×C4C2×C4C2×C4C22
# reps114112244102

Matrix representation of (C2×C4).28D8 in GL6(𝔽17)

1600000
0160000
001000
000100
0000160
0000016
,
3120000
5140000
001900
00131600
0000016
000010
,
14120000
530000
0016800
000100
0000125
00001212
,
530000
14120000
004200
0001300
0000143
000033

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,5,0,0,0,0,12,14,0,0,0,0,0,0,1,13,0,0,0,0,9,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[14,5,0,0,0,0,12,3,0,0,0,0,0,0,16,0,0,0,0,0,8,1,0,0,0,0,0,0,12,12,0,0,0,0,5,12],[5,14,0,0,0,0,3,12,0,0,0,0,0,0,4,0,0,0,0,0,2,13,0,0,0,0,0,0,14,3,0,0,0,0,3,3] >;

(C2×C4).28D8 in GAP, Magma, Sage, TeX

(C_2\times C_4)._{28}D_8
% in TeX

G:=Group("(C2xC4).28D8");
// GroupNames label

G:=SmallGroup(128,831);
// by ID

G=gap.SmallGroup(128,831);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,176,422,387,58,2028,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=a*b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^-1,d*b*d^-1=b^-1,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽