Copied to
clipboard

G = C8.14SD16order 128 = 27

14th non-split extension by C8 of SD16 acting via SD16/C4=C22

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C8.14SD16, C42.155D4, (C2×C4).47D8, (C2×C8).137D4, C8.55(C4○D4), C165C4.10C2, C4.19(C2×SD16), C8.5Q8.6C2, (C2×C16).60C22, (C4×C8).169C22, (C2×C8).543C23, C2.Q32.7C2, C4⋊Q16.15C2, C22.129(C2×D8), C2.D8.28C22, C4.12(C4.4D4), C2.21(Q32⋊C2), C2.14(C4.4D8), (C2×Q16).16C22, (C2×C4).811(C2×D4), SmallGroup(128,977)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C8.14SD16
C1C2C4C8C2×C8C2×C16C165C4 — C8.14SD16
C1C2C4C2×C8 — C8.14SD16
C1C22C42C4×C8 — C8.14SD16
C1C2C2C2C2C4C4C2×C8 — C8.14SD16

Generators and relations for C8.14SD16
 G = < a,b,c | a8=1, b8=c2=a4, bab-1=a5, cac-1=a-1, cbc-1=a6b3 >

Subgroups: 152 in 66 conjugacy classes, 32 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C16, C42, C4⋊C4, C2×C8, Q16, C2×Q8, C4×C8, C4.Q8, C2.D8, C2×C16, C42.C2, C4⋊Q8, C2×Q16, C2×Q16, C165C4, C2.Q32, C4⋊Q16, C8.5Q8, C8.14SD16
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, C4.4D4, C2×D8, C2×SD16, C4.4D8, Q32⋊C2, C8.14SD16

Character table of C8.14SD16

 class 12A2B2C4A4B4C4D4E4F4G4H8A8B8C8D8E8F16A16B16C16D16E16F16G16H
 size 111122441616161622224444444444
ρ111111111111111111111111111    trivial
ρ2111111-1-1-111-11111-1-1-11-1-1-1111    linear of order 2
ρ3111111-1-1-1-1111111-1-11-1111-1-1-1    linear of order 2
ρ4111111111-11-1111111-1-1-1-1-1-1-1-1    linear of order 2
ρ511111111-11-11111111-1-1-1-1-1-1-1-1    linear of order 2
ρ6111111-1-111-1-11111-1-11-1111-1-1-1    linear of order 2
ρ711111111-1-1-1-111111111111111    linear of order 2
ρ8111111-1-11-1-111111-1-1-11-1-1-1111    linear of order 2
ρ9222222220000-2-2-2-2-2-200000000    orthogonal lifted from D4
ρ10222222-2-20000-2-2-2-22200000000    orthogonal lifted from D4
ρ112222-2-22-20000000000-2-22-222-22    orthogonal lifted from D8
ρ122222-2-2-2200000000002-2-22-22-22    orthogonal lifted from D8
ρ132222-2-2-220000000000-222-22-22-2    orthogonal lifted from D8
ρ142222-2-22-2000000000022-22-2-22-2    orthogonal lifted from D8
ρ152-22-22-20000002-22-200-2i0-2i2i2i000    complex lifted from C4○D4
ρ162-22-22-2000000-22-220002i000-2i-2i2i    complex lifted from C4○D4
ρ172-22-2-220000000000-22--2--2-2-2--2--2-2-2    complex lifted from SD16
ρ182-22-22-2000000-22-22000-2i0002i2i-2i    complex lifted from C4○D4
ρ192-22-2-220000000000-22-2-2--2--2-2-2--2--2    complex lifted from SD16
ρ202-22-22-20000002-22-2002i02i-2i-2i000    complex lifted from C4○D4
ρ212-22-2-2200000000002-2--2-2-2-2--2-2--2--2    complex lifted from SD16
ρ222-22-2-2200000000002-2-2--2--2--2-2--2-2-2    complex lifted from SD16
ρ234-4-4400000000-222222-220000000000    symplectic lifted from Q32⋊C2, Schur index 2
ρ2444-4-400000000-22-2222220000000000    symplectic lifted from Q32⋊C2, Schur index 2
ρ254-4-440000000022-22-22220000000000    symplectic lifted from Q32⋊C2, Schur index 2
ρ2644-4-4000000002222-22-220000000000    symplectic lifted from Q32⋊C2, Schur index 2

Smallest permutation representation of C8.14SD16
Regular action on 128 points
Generators in S128
(1 84 59 98 9 92 51 106)(2 93 60 107 10 85 52 99)(3 86 61 100 11 94 53 108)(4 95 62 109 12 87 54 101)(5 88 63 102 13 96 55 110)(6 81 64 111 14 89 56 103)(7 90 49 104 15 82 57 112)(8 83 50 97 16 91 58 105)(17 78 128 46 25 70 120 38)(18 71 113 39 26 79 121 47)(19 80 114 48 27 72 122 40)(20 73 115 41 28 65 123 33)(21 66 116 34 29 74 124 42)(22 75 117 43 30 67 125 35)(23 68 118 36 31 76 126 44)(24 77 119 45 32 69 127 37)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 120 9 128)(2 28 10 20)(3 118 11 126)(4 26 12 18)(5 116 13 124)(6 24 14 32)(7 114 15 122)(8 22 16 30)(17 59 25 51)(19 57 27 49)(21 55 29 63)(23 53 31 61)(33 93 41 85)(34 102 42 110)(35 91 43 83)(36 100 44 108)(37 89 45 81)(38 98 46 106)(39 87 47 95)(40 112 48 104)(50 125 58 117)(52 123 60 115)(54 121 62 113)(56 119 64 127)(65 107 73 99)(66 96 74 88)(67 105 75 97)(68 94 76 86)(69 103 77 111)(70 92 78 84)(71 101 79 109)(72 90 80 82)

G:=sub<Sym(128)| (1,84,59,98,9,92,51,106)(2,93,60,107,10,85,52,99)(3,86,61,100,11,94,53,108)(4,95,62,109,12,87,54,101)(5,88,63,102,13,96,55,110)(6,81,64,111,14,89,56,103)(7,90,49,104,15,82,57,112)(8,83,50,97,16,91,58,105)(17,78,128,46,25,70,120,38)(18,71,113,39,26,79,121,47)(19,80,114,48,27,72,122,40)(20,73,115,41,28,65,123,33)(21,66,116,34,29,74,124,42)(22,75,117,43,30,67,125,35)(23,68,118,36,31,76,126,44)(24,77,119,45,32,69,127,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,120,9,128)(2,28,10,20)(3,118,11,126)(4,26,12,18)(5,116,13,124)(6,24,14,32)(7,114,15,122)(8,22,16,30)(17,59,25,51)(19,57,27,49)(21,55,29,63)(23,53,31,61)(33,93,41,85)(34,102,42,110)(35,91,43,83)(36,100,44,108)(37,89,45,81)(38,98,46,106)(39,87,47,95)(40,112,48,104)(50,125,58,117)(52,123,60,115)(54,121,62,113)(56,119,64,127)(65,107,73,99)(66,96,74,88)(67,105,75,97)(68,94,76,86)(69,103,77,111)(70,92,78,84)(71,101,79,109)(72,90,80,82)>;

G:=Group( (1,84,59,98,9,92,51,106)(2,93,60,107,10,85,52,99)(3,86,61,100,11,94,53,108)(4,95,62,109,12,87,54,101)(5,88,63,102,13,96,55,110)(6,81,64,111,14,89,56,103)(7,90,49,104,15,82,57,112)(8,83,50,97,16,91,58,105)(17,78,128,46,25,70,120,38)(18,71,113,39,26,79,121,47)(19,80,114,48,27,72,122,40)(20,73,115,41,28,65,123,33)(21,66,116,34,29,74,124,42)(22,75,117,43,30,67,125,35)(23,68,118,36,31,76,126,44)(24,77,119,45,32,69,127,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,120,9,128)(2,28,10,20)(3,118,11,126)(4,26,12,18)(5,116,13,124)(6,24,14,32)(7,114,15,122)(8,22,16,30)(17,59,25,51)(19,57,27,49)(21,55,29,63)(23,53,31,61)(33,93,41,85)(34,102,42,110)(35,91,43,83)(36,100,44,108)(37,89,45,81)(38,98,46,106)(39,87,47,95)(40,112,48,104)(50,125,58,117)(52,123,60,115)(54,121,62,113)(56,119,64,127)(65,107,73,99)(66,96,74,88)(67,105,75,97)(68,94,76,86)(69,103,77,111)(70,92,78,84)(71,101,79,109)(72,90,80,82) );

G=PermutationGroup([[(1,84,59,98,9,92,51,106),(2,93,60,107,10,85,52,99),(3,86,61,100,11,94,53,108),(4,95,62,109,12,87,54,101),(5,88,63,102,13,96,55,110),(6,81,64,111,14,89,56,103),(7,90,49,104,15,82,57,112),(8,83,50,97,16,91,58,105),(17,78,128,46,25,70,120,38),(18,71,113,39,26,79,121,47),(19,80,114,48,27,72,122,40),(20,73,115,41,28,65,123,33),(21,66,116,34,29,74,124,42),(22,75,117,43,30,67,125,35),(23,68,118,36,31,76,126,44),(24,77,119,45,32,69,127,37)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,120,9,128),(2,28,10,20),(3,118,11,126),(4,26,12,18),(5,116,13,124),(6,24,14,32),(7,114,15,122),(8,22,16,30),(17,59,25,51),(19,57,27,49),(21,55,29,63),(23,53,31,61),(33,93,41,85),(34,102,42,110),(35,91,43,83),(36,100,44,108),(37,89,45,81),(38,98,46,106),(39,87,47,95),(40,112,48,104),(50,125,58,117),(52,123,60,115),(54,121,62,113),(56,119,64,127),(65,107,73,99),(66,96,74,88),(67,105,75,97),(68,94,76,86),(69,103,77,111),(70,92,78,84),(71,101,79,109),(72,90,80,82)]])

Matrix representation of C8.14SD16 in GL6(𝔽17)

690000
11110000
00111393
0010671
0000149
001583
,
720000
10100000
00124015
001115105
00815911
0090315
,
11140000
660000
0020216
0091477
00261511
0091203

G:=sub<GL(6,GF(17))| [6,11,0,0,0,0,9,11,0,0,0,0,0,0,11,10,0,1,0,0,13,6,0,5,0,0,9,7,14,8,0,0,3,1,9,3],[7,10,0,0,0,0,2,10,0,0,0,0,0,0,12,11,8,9,0,0,4,15,15,0,0,0,0,10,9,3,0,0,15,5,11,15],[11,6,0,0,0,0,14,6,0,0,0,0,0,0,2,9,2,9,0,0,0,14,6,12,0,0,2,7,15,0,0,0,16,7,11,3] >;

C8.14SD16 in GAP, Magma, Sage, TeX

C_8._{14}{\rm SD}_{16}
% in TeX

G:=Group("C8.14SD16");
// GroupNames label

G:=SmallGroup(128,977);
// by ID

G=gap.SmallGroup(128,977);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,568,422,723,58,1123,360,3924,102,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^8=1,b^8=c^2=a^4,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=a^6*b^3>;
// generators/relations

Export

Character table of C8.14SD16 in TeX

׿
×
𝔽